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Abstract Methods for characterizing the most important textural properties of
porous materials, particularly pore size distribution (PSD) and specific surface
area (SSA), using theoretical models to analyze standard experimental physisorp-
tion isotherms are reviewed. For PSD analysis, we explain the basics of the classical
methods, including those based on the Kelvin equation and adsorption potential
theory, as well as the modern molecular methods based on the density functional
theory (DFT) and molecular simulation. For SSA analysis, the discussion is focused
on kinetic theory, and primarily on the application of the Brunauer-Emmett-Teller
(BET) method for characterization of microporous materials. Current advances and
extensions ofmodel-basedmethods are discussed, including those related tomachine
learning techniques. We reflect on the limitations of the current state-of-the-art
methods and point out some possible directions for future studies.

1 Introduction

The demand for accurate and fast characterization of porous materials has increased
dramatically in recent years, due to the wide application of these materials to solve
engineering and global environmental problems (for example, design of supercapaci-
tors [1], hydrogen storage [2], and carbon capture [3]). The adsorption capacity [4, 5],
phase equilibrium [6–8], and transport [9] of confined phases in porous materials are
directly linked to their structure properties, such as specific surface area (SSA) and
pore size distribution (PSD). Knowledge and control of the PSD and surface area of
porous materials is of utmost importance in many applications, including medical
and dental implants [10, 11], filtration [12, 13], catalysis [14–17], next-generation
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Fig. 1 Crystallization of
aspirin on porous materials
with different pore size
distributions. P(t) is the
probability of no crystal
forming at time (t). The pore
sizes have a dramatic effect
on the crystallization rate.
Reprinted with permission
from Ref. [25]. Copyright
(2011) American Chemical
Society

high-pressure manufacturing [18–22], geological applications (including storage of
gas, oil, andwater in reservoirs [23]), crystallization control (see an example in Fig. 1)
[24, 25], among others. For this reason, the development of accurate, high-throughput
techniques to determine PSD and SSA can have an impact in many different fields.

There is a long history of the development of both experimental and theoretical
methods to obtain the textural properties of porous materials. Experimental methods
for measuring the PSD include small-angle X-ray (SAXS) and neutron scattering
(SANS), gas adsorption, mercury porosimetry, microscopy, and X-ray microtomog-
raphy, among many others [26–28]. The experimental measurement of the SSA is
often limited to the gas sorption method. Physisorption experiments are the most
used techniques to understand the thermodynamic state of confined phases and the
structure of porous materials. Physisorption has the advantage of being a convenient,
non-destructive, and reversible method. Hybrid methods, combining physisorption
experiments and theoretical models based on classical thermodynamics and statis-
tical mechanics [29, 30], are able to extract much critical structural information of the
porous materials, including the PSD and SSA, and they are performed as a routine
analysis nowadays.

This book chapter focuses primarily on theory- and simulation-based hybrid
approaches for the PSD and SSA characterization of porous materials, including
some of the recent advances and extensions of the traditional approaches. The
chapter is organized as follows: Sect. 2 describes methods for the determination
of the PSD, including classical methods based on the Kelvin equation and the
adsorption potential theory, as well as more modern methods based on the clas-
sical density functional theory (DFT) and grand canonical Monte Carlo (GCMC)
simulation. Section 3 discusses methods to determine the SSA, including the widely
used Brunauer-Emmett-Teller (BET) method, and discusses newer extensions of the
BET method as well as modern approaches based on machine learning techniques.
Finally, Sect. 4 provides some concluding remarks and outlines some possible future
developments.
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2 Pore Size Distribution

2.1 Classical Methods

Mesopore Analysis The adsorption behavior in mesopores (2–50 nm) depends not
only on the solid-fluid interactions, but also on the fluid-fluid interactions, leading to
the occurrence of pore condensation and multiplayer adsorption. Before the advent
of statistical mechanical methods, mesopore size characterization generally made
use of the correlation between the pore condensation pressure and the pore size,
established by the Kelvin equation [31]. The Kelvin equation relates the shift of
pore condensation pressure, P, relative to the bulk coexistence pressure, P0, to the
macroscopic properties:

ln
P

P0
= −2γ V̄

r RT
(1)

where P is the actual vapor pressure (i.e., the pore condensation pressure, P <

P0), γ is the liquid/vapor surface tension, V̄ is the molar volume of the liquid, r
is the radius of the droplet (or pore radius), R is the gas constant and T is the
temperature.However, Eq. (1) does not consider the pre-adsorbed layers near the pore
wall before the pore condensation happens. The original Kelvin equation was later
modified to correct this problem [32]. In the modified Kelvin equation, the variable
r in Eq. (1) is replaced by

(
rp − tc

)
, where rp and tc are the actual pore radius and

the critical thickness of the adsorbed films at which pore condensation occurs. The
modified Kelvin equation serves as the basis for many methods developed for pore
size analysis, among which are included the Barrett-Joyner-Halenda (BJH) method
[33], which is the most widely-used method for mesopore size analysis. The typical
procedure to obtain a PSD profile is to build a work-table, including the columns
of the following parameters: relative pressure, the corresponding Kelvin radius [r ,
from Eq. (1)] and the thickness of the pre-adsorbed layers (tc, by Halsey equation
[34, 35] for example), the pore radius (rp) at each relative pressure, the mean value of
Kelvin radius and pore radius (r̄ p), and the change of pre-adsorbed film thickness and
of liquid volume (converted from experimental volumetric gas physisorption data).
The mean values and changes of quantities are calculated between two consecutive
pressure conditions. The pore volume at a certain r̄ p can be calculated based on
these quantities. An example calculation of the PSD based on the modified Kelvin
equation is demonstrated in Ref. [27]. All methods that are based on the classical
Kelvin equation make three main assumptions:

1. The porous material is composed of a collection of well-defined pores (cylin-
drical or slit-shaped), and the solid-fluid interactions are negligible for pore
condensation in the inner core.

2. The thermodynamic properties of the confined phase (liquid-like) are the same
as those of the corresponding bulk phase.
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3. The thickness of the pre-adsorbed multi-layers can be estimated by the statistical
thickness of layers onnon-porousmaterialswhich share similar surface chemistry
(i.e., similar BET C value, see Sect. 3.1) to the porous sample.

The first assumption sets the limitation that the method can only be applied to
large mesopores and macropores (see Fig. 2), and caution should always be exer-
cised when applying this method to calculate the PSD of materials having small and
connected pores. Gelb and Gubbins [36] showed that the BJH method yields a qual-
itatively similar PSD profile compared to the exact geometric PSD in porous glasses
with complex pore shape and connectivity, but the BJH method underestimates the
pore size in a systematic way for small mesopores (~ 2 to 4 nm, consistent with the
data presented in Fig. 2). The second assumption leads to deviations in small pores,
where the confined fluid is structured layer-by-layer. In addition, the surface tension
of the curved interface at the nanoscale is no longer a constant, as in the planar case.
According to the Tolman equation [37], the surface tension of a droplet depends on
the radius of the curvature [38]. The third assumption makes it easy to correlate the
thickness of the layer with pressure, but the effect of adsorbent surface curvature on
the adsorption amount (and thus on the thickness of the layer) has been omitted. The
third assumption is also the basic approximation adopted by many other classical

Fig. 2 Pore filling correlation predicted by Gibbs ensemble Monte Carlo (GEMC) simulation,
non-local density functional theory (NLDFT), the original Horvath-Kawazoe (HK) method, modi-
fied Horvath-Kawazoe (MHK) method and the Barrett-Joyner-Halenda (BJH) method for nitrogen
adsorption in carbon slit pores at 77 K. The HK method gives better agreement with the (exact)
GEMC simulations than the modified Kelvin equation (BJH) in the micropore range, but performs
more poorly in mesopores. The MHK method, using a more realistic 10-4-3 potential, gives better
agreement with the NLDFT and GEMC simulations in micropores. The MHK data are from Ref.
[48] and the rest are from Ref. [49, 50]
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methods for the PSD analysis that involve predicting the layer thickness in pores.
Nguyen and Do [39] showed that the PSDs calculated by the modified Kelvin equa-
tion in conjunction with an enhanced film thickness equation that depends on both
pressure and pore size are comparable with those from the density functional theory.

Due to their theoretical simplicity and convenient implementation, methods based
on the Kelvin equation (mainly the BJH method) are still widely used nowadays for
analyzing the PSD of mesoporous materials. Efforts have been made to adapt the
Kelvin equation to pores of finite length [40, 41], and to calibrate the performance
of the BJH method for specific systems, such as for MCM-41 [42], CO2 in activated
carbon [43] and alumina samples having large and irregular slit-shaped mesopores
(>10 nm) [44]. A general improvement of the BJH method has been made recently
by introducing a correction term in the algorithm [45, 46]. The value of the correction
term was chosen to fit the experimental isotherm data, and the PSD obtained by the
proposed method is in favorable comparison with that from density functional theory
[46]. The BJH method was originally developed for a single pore shape; it has been
extended to analyze dual pore size distribution for coexistence of slit-shaped and
cylindrical pores [47].

Micropore Analysis For micropores (< 2 nm), the Kelvin equation is no longer
valid. Here we introduce several popular methods that have been widely used in the
community to determine the PSD of microporous materials.

Themicropore analysis (MP)method byMikhail, Brunauer andBodor [51] allows
one to obtain the surface area, pore volume and PSD of the micropores from a single
isotherm. TheMPmethod can be considered as an extension of the t-method [52, 53],
where the adsorbed liquid volume, Vliq , is plotted against the statistical thickness of
the adsorbed film, t, which is determined from adsorbed films on nonporousmaterials
having a similar BET C value, as a function of pressure. Once the Vliq − t plot is
made, the slope of the curve evaluated at a point between two thicknesses, ti and
ti+1, is considered as the surface area of the pore that has not been filled:

Si+1 = dVliq

dt

∣∣
∣∣
rh

(2)

where the hydraulic radius is rh = (ti+ti+1)

2 . The difference, (Si − Si+1), is the surface
area for pores with hydraulic radii between ti and ti+1 that has become filled. The
pore volume corresponding to the hydraulic radius rh can then be calculated by

Vi = (Si − Si+1)rh (3)

The MPmethod is applicable to both slit-shaped and cylindrical pores, and the value
2rh is the pore width for slit-shaped pores or the pore radius for cylindrical pores.
Because the statistical thickness of the film gives the actual measure of the pore size
in the MP method, it is not hard to imagine that the lack of statistical thickness data
for certain adsorbents, and the approximation of the film thickness in pores to that
on a non-porous material, will make the results from the MP method questionable.
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The Dubinin-Radushkevich (DR) method provides another way to measure the
micropore PSD, based on Polanyi’s adsorption potential theory [54]. In Polanyi’s
theory, the adsorption potential A at a certain distance from the surface corresponds
to the molar free energy to compress the vapor from pressure P, to the liquid state at
the saturation pressure, P0:

A = RT ln
P0
P

(4)

The DR method postulates that the experimental micropore volume occupied by the
condensed liquid, Vliq, follows a Gaussian distribution in terms of this adsorption
potential,

Vliq = V0 exp

[

−
(

A

βE0

)2
]

(5)

where V0 is the total micropore volume; β is the affinity coefficient defined as the
characteristic adsorption energy of an adsorbate, E, to the reference value, E0, where
benzene was used as the reference adsorbate [55]. To extend the DR equation to
heterogeneous surfaces, the exponent of the term, A

(βE0)
, in Eq. (5), is simply replaced

by n, leading to the Dubinin-Astakhov (DA) equation [56]. The value of exponent
n ranges from 2 to 6 in practice. The DR and DA formalisms have been compared
in terms of adsorption potential distribution for pillared clays, zeolites and activated
carbons [57]. The reference characteristic adsorption energy, E0, has a one-to-one
mapping to the pore size [55]. Therefore, for a realmicroporousmaterial composed of
a collection of different micropores, the PSD can be obtained by solving the integral
equation [58]:

Vliq =
∫

f (E0) exp

[

−
(

A

βE0

)2
]

dE0 (6)

where f (E0) is the PSD function in terms of the reference characteristic adsorp-
tion energy. It can be converted to the normal PSD by using the relation between the
pore size and E0 [55]. To solve Eq. (6), f (E0) is usually assumed to be the Gaussian
distribution [58]. It has been shown that, without restricting f (E0) to a particular
shape, the DR method is able to capture the bimodal PSD of chars [59]. The DR
method in principle is not applicable to low pressures (Henry’s law region). Sun [60]
has modified the DR method to make it flexible enough to model the N2 isotherm
over a wide range of pressure.

Horvath and Kawazoe (HK) [61] introduced a simple PSD analysis that considers
pore shape and molecular adsorbate-adsorbent interactions. They obtained a direct
relation between the pore filling pressure and the physical pore width (defined as the
distance between the nuclei of the two opposing pore surfaces for a slit-shaped pore)
by equating the (−A) inEq. (4) to a uniformpotential field.Theuniform (unweighted)
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potential field was obtained by spatially averaging the local 10-4 potential over
the entire pore. Both adsorbate-adsorbent and adsorbate-adsorbate interactions were
included in the potential field, although the adsorbate-adsorbate part was not handled
correctly [48]. For nitrogen adsorbed in a microporous carbon material at 77.4 K,
the pore filling correlation is given by [61]

ln

(
P

P0

)
= 62.38

H − 0.64

[
1.895 × 10−3

(H − 0.32)3
− 2.7087 × 10−7

(H − 0.32)9
− 0.05014

]
(7)

where the physical porewidth,H, is in units of nanometers. Thus, for a given physical
porewidth, a uniqueporefillingpressure,P, can be found (seeFig. 2). TheHKmethod
assumes the pore filling mechanism is discontinuous, that is, for each pressure, P,
only pores that have physical pore width equal to or smaller than the corresponding
physical pore width (calculated by Eq. (7), for example) are filled. The assumed
discontinuous mechanism is a good approximation for small micropores but has
been shown to be a source of error in the characterization of large micropores [62]. If
we plot the experimental volume of adsorbed gas in its liquid state at a certain relative
pressure versus the corresponding internal pore width, w = H − σss , where σss is
the diameter of the adsorbent atom, we then have a Vliq − w plot, i.e., a cumulative
pore volume curve. The first-order gradient of the plot, dVliq

dw
, is the PSD. The HK

method was originally developed for micropores having slit-shaped pores. It has
been extended to cylindrical pores by Saito and Foley [63], and to spherical pores by
Cheng and Yang [64]. Lastoskie and co-authors have modified the HK method by
replacing the original unweighted potential fieldwith a density-weighted integral [65]
and by using a more realistic adsorbate-adsorbent potential (10-4-3 Steele potential
[66]) and potential parameters [48]. It turned out that the latter modification, with
the original unweighted scheme (here the adsorbate-adsorbate interaction was not
included), yields a pore filling correlation in good agreement with the exact ones
from the density functional theory and molecular simulation [48] (see Fig. 2 for
MHK data). Although the HK method improves on the DR method by taking a
realistic adsorbate-adsorbent potential and the pore geometry into account, it still
makes the assumption that the thermodynamic properties of the confined phase are
similar to those of the bulk phase,which is incorrect, as revealed bymodernmolecular
methods based on statistical mechanics.

2.2 Modern Molecular Methods: Density Functional Theory
and Molecular Simulations

The development of the statistical mechanical methods, including classical density
functional theory (recently reviewed by Landers et al. [67]) and molecular simu-
lations, has advanced the understanding of the fluids confined in pores, and leads
to a universal approach that, in principle, enables the accurate characterization of
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PSD over the complete pore range (micro-, meso- and macro-pores). The molecular
methods have been considered superior to the classical methods, and they have been
recommended as the standard ones for routine PSD analysis. They are available in
commercial software for easy use by the experimentalists.

Classical Density Functional Theory (DFT) The principle behind DFT is that, for
an open system, where molecules can freely exchange with a reservoir, the grand
potential functional, Ω , can be written as a functional of local fluid density, ρ(r), at
position r:

Ω[ρ(r)] = F[ρ(r)] −
∫

d rρ(r)[μ − Vext (r)] (8)

where F is the intrinsic Helmholtz free energy functional,μ is the chemical potential
of adsorbatemolecules, and Vext (r) is the spatially-varying external potential exerted
by the pore walls. The integration is carried out over the entire system.We can obtain
the equilibrium density profile ρeq(r) by minimizing the functional derivative of the
grand potential with respect to the fluid density profile, i.e.,

δΩ[ρ(r)]
δρ(r)

∣
∣∣∣
ρ(r)=ρeq (r)

= 0 (9)

When more than one minimum is present, the density profile that gives the lowest
grand potential is the stable branch. Readers are referred to Hansen and McDonald
[29] for detailed derivations of the DFT framework. Once the grand potential at
equilibrium is known, other thermodynamic properties of the system are readily
available, and the adsorbed amount in the pores (i.e., isotherm) can be calculated from
the equilibrium density profile. The PSD is calculated by minimizing the following
expression:

⎡

⎣n(P) −
wmax∫

wmin

f (w)K (w, P)dw

⎤

⎦

2

+ λ

wmax∫

wmin

[
f ′′(w)

]2
dw (10)

where n(P) is the experimental specific adsorption or desorption isotherm at pres-
sure P, the internal pore width is w, f (w) is the pore size distribution function and
K (w, P) is the so-called kernel function which is the isotherm, predicted from either
DFT or GCMC simulation at a specific pore size w. The integration in Eq. (10) is
from the minimum pore width to the maximum pore width. Simply minimizing the
first term in Eq. (10) for f (w), however, is an ill-posed inverse problem, and a
regularization term (second term in Eq. (10)) should be added, where λ is the regu-
larization parameter. A stable numerical method for solving for f (w) is available
in the SAIEUS program [68, 69]. Seaton, Walton and Quirke [70] were the first to
apply DFT to predict the PSD. Their method is based on the local version of DFT,
which assumes that the specific free energy at a point r depends only on the local
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density at that point, and so neglects effects of strong density gradients near the
pore walls. Nevertheless, the local DFT provides significant improvement over the
classical methods for PSD in both the mesopore and micropore range. However, it
fails to reproduce the strong oscillations characteristic of the fluid density profile at a
solid-fluid interface for small pores. Lastoskie et al. [50], and independently Olivier
et al. [71], applied the non-local DFT (NLDFT) to the PSD analysis. Compared to the
local version, the non-local version evaluates the excess Helmholtz free energy in the
hard sphere term using a non-local density approximation [72, 73], that accounted
for strong oscillations in the density profile near the pore walls. The NLDFT leads to
quantitatively accurate fluid structure in nanopores compared to the local DFT, as has
been confirmed by molecular simulations [74]. The consistency and validity of the
NLDFThas further been confirmed by comparing the calculated PSD to experimental
X-ray diffraction (XRD) measurements for porous materials with well-defined pore
geometry [75, 76] (see Fig. 3). The PSD calculation using NLDFT generally makes
the following main assumptions:

1. The pore wall is homogeneous and smooth [50, 77, 78]. For example, the 10-4-3
Steele potential derived from a homogeneous graphite surfaces is usually adopted
for modeling a carbon slit-shaped pore [50].

2. Pores in the material have a single geometry and single-level surface hetero-
geneity.

Fig. 3 Pore size distribution ofMCM-41 sampleAM-1 byKruk-Jaroniec-Sayari (KJS) [42]method
and NLDFT methods. KJS is a modified method based on the BJH method, and it was calibrated
for MCM-41 materials. KJS method was found to be quite successful for MCM-41 materials in
the pore size range of 2–6.5 nm, but for sample AM-1 here, it underpredicts the pore size by about
3 Å. The calculated PSD by the NLDFT method is in perfect agreement with the pore size from the
XRDmeasurement. Adaptedwith permission fromRef. [76]. Copyright (2000) American Chemical
Society
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3. The pore size information can be fully extracted from a single-component
adsorption or desorption isotherm.

It has been known for a long time that the first assumption leads to two artifacts:
a typical S-shaped deviation from the experimental isotherm, due to layering transi-
tions on the (assumed in the model) smooth surface, and a minimum in the PSD plot
at a pore width of about 10 Å (see Fig. 4). In fact, nearly all real surfaces exhibit some
degree of defects through geometric curvature, heteroatoms in the surface structure
and chemical groups attached to the surface. Efforts have been devoted to eliminating

Fig. 4 Comparison of theNLDFTandQSDFTmethods for nitrogen adsorption for activated carbon
fiberACF-15. aExperimental adsorption isotherm in comparisonwith the fitted isothermbyNLDFT
and QSDFT methods. b PSD calculated by the NLDFT and QSDFT methods. The NLDFT method
produces artifacts of a S-shaped isotherm and a minimum in the PSD plot at a pore width of about
10 Å. These two artifacts can be attributed to the homogeneous surface model used in the NLDFT
method. QSDFT eliminates these two artifacts and presents a better fit to the experimental isotherm
data. Adapted from Ref. [82], Copyright (2009), with permission from Elsevier
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these two artifacts by introducing heterogeneities to the pore wall potential in the
DFT framework. Examples are the introduction of an external potential accounting
for variable wall thickness [79], variable surface density [80–82], incorporating pore
edge effects [83, 84], and also models that incorporate a periodic function to the
fluid-wall potential in a direction parallel to the pore surface [85–89]. Among these
modifications, two notable versions are quenched solid density functional theory
(QSDFT) and 2D-NLDFT. In QSDFT [81, 82], the geometrically heterogeneous
pore wall is represented explicitly by a one-dimensional density profile of carbon
atoms controlled by a single roughness parameter, while in 2D-NLDFT, by intro-
ducing periodic functions into the pore wall potential, both energetic and geometric
heterogeneities of the pore wall have been accounted for either in a separate [85]
or combined way [90]. Both methods eliminate the two artifacts of the traditional
NLDFT method for activated carbon materials [82, 85] (see Fig. 4 for an example
of QSDFT). When characterizing the same carbon materials, the QSDFT and 2D-
NLDFTmethods give similar PSD results [91]. This might be because both methods
adjust the potential parameters for the carbon pore model by fitting the theoretical
adsorption isotherm to the experimental data of the reference Cabot BP-280 [92].
For silica adsorbents, QSDFT calculates the parameters from the XRD measure-
ment [93], while 2D-NLDFT fits potential parameters to the data of reference silica
LiChrospher-Si-1000 [88]. It would be good to test both methods on the same silica
materials and see if they give consistent results. In addition to modifying the pore
wall model in the theory, Kupgan et al. [94] showed that, by tuning the regular-
ization parameter, λ, in Eq. (10), the performance of NLDFT methods can also
be improved for calculating the PSD of amorphous microporous materials. They
proposed a smooth-shift method to obtain the regularization parameter in compar-
ison to the conventional L-curve method [95]. The smooth-shifted PSD agrees well
with the exact geometric PSD from molecular simulation. It is not clear, however, if
the smooth-shiftedmethod can eliminate the artifact of S-shaped adsorption isotherm
from NLDFT.

The second assumption in NLDFT (single pore geometry and single-level surface
heterogeneity) is not bad for a general PSD analysis. Allowing for the variation of the
pore geometry and surface heterogeneity, however, adds more flexibility and reality
to the theoretical model, leading to a better fitting to the experimental isotherm and
better representation of the materials. Thommes et al. [96] developed a set of hybrid
NLDFT kernels allowing for different pore geometries for hierarchically structured,
micro-mesoporous silica materials. The hybrid kernels use a cylindrical pore model
for micropores and small mesopores, and a spherical pore model for large meso-
pores where hysteresis occurs. The authors found that the hybrid approach is able
to capture the full PSD in the complete micro- and meso-pore range, and the calcu-
lated PSD agreedwith the results from independent SANS/SAXSmeasurement [96].
Gor et al. [97] were able to construct four different sets of hybrid kernels that use
different pore geometry within different ranges of pore size, and these hybrid kernels
have been successfully applied to characterize the micro-mesoporous carbons [97,
98]. Attempts to construct hybrid kernels allowing for different levels of surface
heterogeneity have only been made recently. Lucena et al. [99] proposed a set of
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hybrid kernels composed of simulated isotherms on surfaces having different levels
of etching [100], covering from a homogeneous surface to a highly heterogenous
surface. They have shown that employing the hybrid kernels for the PSD calculations
reveals new structural details of the carbon porous materials (see Fig. 5). However,
the use of the hybrid kernels requires a better understanding of the materials a priori,
and so far no rational strategy has been proposed for choosing a suitable collection
of kernels for the PSD calculations.

The third assumption (PSD can be fully extracted from a single-component
isotherm) is the safest one and has been validated by comparing the calculated
PSD with independent experimental measurements [67, 88, 96]. Although the pure
adsorption/desorption kernels of N2 at 77 K or Ar at 87 K are dominant in standard
PSD calculations, it becomes problematic when analyzing fine micropores where the
diffusion of N2 is very slow [101], making the experimental measurement of equi-
librium adsorption difficult to achieve. Recently, a dual gas analysis of PSD with the
2D-NLDFT method was proposed, where the adsorption data of N2 & CO2 [102,
103] or O2 & H2 (for minimal interaction of gas quadrupole moment with surface

Fig. 5 Pore size distribution (PSD) by the hybrid kernels representing different levels of surface
heterogeneity for PC58 sample. 26% of the total pore volume belong to pores having homogeneous
surfaces, 31% of the total pore volume belong to pores having surfaces of 25% etching level, 29%
of the total pore volume belong to pores having surfaces of 50% etching level, and 14% of the total
pore volume belong to pores having surfaces of 75% etching level. Using the hybrid kernels reveal
new information about the materials. Reprinted from Ref. [99]. Copyright (2017), with permission
from Elsevier
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polar sites) [104] were processed simultaneously to get a high-resolution PSD in full
micro- and meso-pore range.

Monte Carlo Simulation GCMC simulation [105] is another method to get the
kernels for PSDanalysis.UnlikeDFT,where the equations are numerically evaluated,
the confined system in GCMC can be explicitly set up in a 3D simulation box with
specified intermolecular force fields (see Fig. 6). The temperature, chemical potential
and volume of the simulation box are pre-specified constants. During the simulation,
the adsorbate molecules in the simulation box are in free exchange with a “ghost”
bulk reservoir whose chemical potential is equal to the pre-set value (see Fig. 6).
When enough exchanges (i.e., insertion or deletion move of molecules in the box)
have beenmade, the simulation box is in chemical equilibriumwith the “ghost” reser-
voir. Meanwhile, translational, and rotational (for non-spherical molecules) moves
are also attempted randomly for adsorbate molecules in the simulation box to make
sure the system eventually reaches the thermal equilibrium (assuming the structure
of adsorbent is fixed). The Metropolis scheme is usually employed to determine if
an attempted move should be accepted or declined. Once enough moves have been
made for the simulation to reach equilibrium, the adsorption amount in the modeled

Fig. 6 Schematic of grand canonical Monte Carlo simulation. The argon molecules (pink particle)
are in free exchange between the “ghost” bulk reservoir (top) and the simulation box (bottom).
When chemical equilibrium is reached, the chemical potentials in both systems are equal



328 K. Shi et al.

nanopore can then be directly calculated from the average over all equilibrium config-
urations of the molecules. In contrast to DFT-based methods, where some approxi-
mations aremade (e.g., mean field approximation), the results from the GCMC simu-
lation are considered to be exact for the model system (model for the intermolecular
forces, pore geometry, etc.). In addition, the pore geometry and atomic surface struc-
ture can bemodeled as realistically as desired in theGCMCsimulation [99, 106–108].
However, consistency of the PSDs obtained from GCMC-based kernels and DFT-
based kernels can be reached if suitable intermolecular parameters are chosen [109].
As of now, DFT-based kernels are still dominant over the GCMC-based kernels,
mainly due to the fast execution of DFT calculations (minutes) compared to GCMC
simulations (days). To explore the atomic details of the surface structure, or to access
adsorption of complex molecules, this time expense must be paid, although some
efforts to address this have beenmade on theDFT side recently by combiningQSDFT
and statistical associating fluid theory [110]. With increasing computational power
and better understating of the surface structure at the microscopic scale, the GCMC
method is expected to become more widely used in constructing the kernels for PSD
determination.

3 Surface Area

3.1 Kinetic Theory

To characterize the surface area, kinetic theory remains the most successful and
widely used method over the past century, thanks to its simplicity, satisfactory accu-
racy, and the clear physical meanings behind the concepts involved. The Langmuir
equation and BET equation form the foundation of the adsorption kinetic theory for
monolayer adsorption and multilayer adsorption, respectively.

Langmuir Equation In 1918, Langmuir [111] proposed the first quantitative
description of monolayer adsorption (including chemisorption) by viewing adsorp-
tion onto the surface as a reversible chemical reaction. If only one type of surface
site is available, the adsorption reaction can be written as:

A + S � AS

where A is adsorbate, S is an unoccupied surface site, and AS is the surface site
occupied by adsorbate through chemical forces. By equating the adsorption reaction
rate to the desorption rate, the Langmuir equation can be recovered:

n = nm
K P

1 + K P
(11)
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where n is the experimental specific adsorbed amount (e.g., in units of mol/g) at the
partial pressure of the adsorbate, P; nm is the monolayer saturation capacity, and K
is the adsorption equilibrium constant. To obtain the surface area of the material,
Eq. (11) is fitted to the experimental adsorption isotherm. The SSA, as , is calculated
by

as = nmNAσm (12)

where NA is Avogadro’s number and σm is the molecular cross-sectional area. The
application of Langmuir’s equation should, in principle, be limited to the monolayer
adsorption on non-porous materials, but it is often applied to the general adsorption
isotherm of Type I (see Fig. 7) which also represents adsorption behavior in microp-
orous materials. Without a deep understanding of the pore topology and pore filling
mechanism in microporous materials, a good fit of the Langmuir equation to the
experimental isotherm should only be interpreted as the mathematical effectiveness

Fig. 7 International Union
of Pure and Applied
Chemistry (IUPAC)
classification of
physisorption isotherms.
Reprinted with permission
from Ref. [26]. Copyright
(2015) IUPAC & De Gruyter
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of the model, and the surface area obtained usually does not reflect the true surface
area. The Langmuir equation assumes the surface is homogeneous. For adsorption on
heterogeneous surfaces, several semi-empirical equations have been proposed based
on the Langmuir equation and the Freundlich isotherm, such as the Sips equation
[112] and the Toth equation [113]. There is no preference for one empirical model
over the other, and the choice of a particular equation usually depends on their fitting
quality to the experimental isotherm data of Type I shape.

Brunauer-Emmett-Teller (BET) Equation In reality, almost all monolayer adsorp-
tion on an open surface will be followed by the stacking of second, third and higher
layers as the gas pressure is increased. In 1938, Brunauer, Emmett and Teller [114]
extended the Langmuir formulation to a multilayer adsorption scenario, by consid-
ering the formation of higher layers on top of the first adsorbed layer as a dynamic
process. The BET theory is based on the following assumptions:

1. The surface is atomically homogeneous, and adsorption occurs only on well-
defined surface sites (i.e., one adsorbate molecule per surface site).

2. The pre-adsorbed molecules act as further well-defined adsorption sites for gas
molecules to occupy, and the interactions between the adsorbate molecules in
the same layer are ignored.

3. The heat of adsorption for the second, third and higher layers is the same as the
heat of liquefaction of the adsorbing gas, but different from that for the first layer.

4. At the saturation pressure, P0, the adsorption layer becomes infinitely thick (this
serves as a boundary condition).

Following a similar argument as that of Langmuir, at equilibrium, the “formation”
rate of a certain layer should be equal to the “destruction” rate of that layer. For
example, when the first layer reaches the equilibrium, we have

R1 + R−2 = R−1 + R2 (13)

where R1 is the rate of condensation onto the bare surface, R−2 is the rate of evapo-
ration from the second layer, R−1 is the rate of evaporation from the first layer, and
R2 is the rate of condensation onto the second layer. The rate is directly related to
the surface area covered by the layer. For example,

R1 = k1Pθ0

R−2 = k−2θ2
(14)

where k1 and k−2 are the rate constants, θ0 and θ2 are the empty surface area and the
area covered by the second layer, respectively. Figure 8 presents a diagram for BET
multilayer adsorption. By writing equations similar to Eq. (13) for all other adsorbed
layers and applying the boundary condition (point 4 listed above), the BET equation
can be eventually reached as [114]:
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Fig. 8 BET model of
multilayer adsorption. The
total surface area is the sum
of the empty area (θ0), the
area covered by the first
adsorbed layer (θ1), the area
covered by the second
adsorbed layer (θ2), and so
on

1

n
( P0
P − 1

) = C − 1

nmC
× P

P0
+ 1

nmC
(15)

where C is the BET constant, which is directly related to the adsorbate-adsorbent
interaction strength. Equation (15) can also be rigorously derived from statistical
mechanics [115, 116]. By plotting experimental adsorption data as P

[n(P0−P)] versus

relative pressure, P
P0

(“the BET plot”), a linear correlation can usually be found as
P
P0

ranges from 0.05 to 0.3 for isotherms of Type II, IV and VI (see Fig. 7). By fitting
such linear data with Eq. (15), the specific monolayer capacity, nm , can then be deter-
mined, which leads to the estimation of the specific BET surface area of the materials
[using Eq. (12)]. Because argon molecules do not have a quadrupole moment, and
are less sensitive to the surface chemistry, IUPAC (2015) [26] recommends using
argon at 87 K (its normal boiling point) as the standard adsorption condition for
characterization.

3.2 Current Advances in Characterization of Microporous
Materials by the BET Method and Beyond

BETMethod Most of the porousmaterials that present excellent performance in real
applications (such as gas storage and separation) contain micropores. Because of its
restrictive assumptions, the Langmuir equation is rarely used in practice. Although
theBETequationwas also derived fromseveral simplified assumptions (including the
assumption that the adsorption is on open surfaces), scientists still found it convenient
and useful for characterizing microporous materials. The most common issue asso-
ciated with BET analysis of microporous materials is that multiple linear regions can
be found in the BET plot for fitting, which leads to inconsistency of the calculations.
To enhance the reproducibility, Rouquerol et al. [117] proposed four consistency
criteria, which were later recommended by IUPAC (2015) [26], to locate a linear
region objectively:
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1. The BET C constant obtained from fitting should be positive to be meaningful.
2. The BET fitting range should be restricted to the region where the quantity

n(P0 − P) continuously increases with P
P0
.

3. The P
P0

value in the experimental isotherm that corresponds to the monolayer
capacity, nm , should be in the selected fitting range.

4. The relative pressure calculated from the fittedBET equation [Eq. (15)] by setting
n = nm should not differ from the experimental one (from criterion 3) by more
than 20% [118].

Following the above consistency criteria, we can obtain the SSA that belongs to
the micropores, amicro, by

amicro = aBET − aext (16)

where aBET is the specific BET surface area; aext is the specific surface area
contributed from external (i.e., non-microporous) surfaces, which can be calculated
with the help of the t-method [52, 53] or theαs-method [119].Walton and Snurr [120]
have shown that these consistency criteria lead to a better BET surface area char-
acterization for six microporous metal organic frameworks (MOFs), with the calcu-
lated values being in good agreement with the geometric (accessible) surface area
calculated directly from the MOF atomic structure. It has recently been confirmed
that, based on the calculation of true monolayer surface area [121] from molec-
ular data for over 200 MOFs, the BET theory along with these consistency criteria
can, in general, produce reasonable surface areas for MOFs with a high volumetric
percentage of small micropores (pore diameter < 10 Å and surface area < 1500 m2/g)
[122]. Although the consistency criteria help standardize the BET analysis, they do
not always lead to the correct identification of the pressure range where monolayer
formation occurs, especially for porous materials having a combination of large
micropores (10 Å < pore diameter < 20 Å) and mesopores (pore diameter > 20 Å)
[121, 122]. The adsorption isotherm of these porous materials shows a character-
istic step-wise pattern, and the consistency criteria tend to choose the pressure range
where micropore pore filling occurs, thus usually overestimating the surface area. To
locate the correct region for monolayer formation, Sinha et al. [122] proposed to use
the excess sorption work (ESW) method together with the BET equation (termed as
BET+ESW method). The ESW method [123, 124] was designed to determine the
monolayer capacity directly from the adsorption isotherm without referring to any

adsorption model. By plotting the excess sorption work, φ = nRT ln
(

P
P0

)
, versus

the adsorption loading, n, the monolayer capacity is expected to be the loading at
the first local minimum in the (φ − n) plot (i.e., ESW plot). Although the ESW
method alone usually underestimates the actual surface area [122], it can predict
a rough pressure value that corresponds to the monolayer formation. Therefore, in
addition to the first and second consistency criteria listed above, a new third criterion
was suggested that the BET linear region should be chosen such that it includes the
pressure that corresponds to the first minimum in the ESW plot (see Fig. 9 for an
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Fig. 9 The BET+ESWmethod for estimating the surface area of a carbon nanotube with diameter
of 16.9 Å. a Adsorption isotherm. b The ESW plot. The ochre region is the BET fitting range
determined from original four consistency criteria, and the green region is the new BET range
determined by BET+ESW method. The first local minimum in the ESW plot corresponds to the
pressureP2, and the newBETfitting range is chosen to include this pressure. TheBET+ESWmethod
gives a specific surface area of 819 m2/g, that is closer to the true surface area (939 m2/g) than
other methods. Reprinted with permission from Ref. [122]. Copyright (2019) American Chemical
Society

example). The BET+ESW method has been shown to improve the surface area esti-
mation for porous materials that contain large micropores and mesopores, however,
it fails when no clear minimum is present in the ESW plot. In some cases, the micro-
pores are so small that the first minimum in the ESW plot corresponds to micropore
filling that finishes before the monolayer formation. The result is that the BET+ESW
method tends to suggest the wrong BET fitting range, while the original consistency
criteria work better. Therefore, the BET+ESW method cannot guarantee the correct
estimation of the true monolayer surface area, but can serve as a supplement to the
standard BET analysis to prevent overestimation [122]. It should be noticed that,
when monolayer formation and pore filling become indistinguishable, even if all
consistency criteria are satisfied, the BET related methods are unable to predict the
correct surface area. In such cases, the BET plot only exhibits one linear regionwhere
the monolayer formation and pore filling occurs simultaneously, and the monolayer
capacity determined from the BET method now also includes the non-monolayer
amount, thus overestimating the surface area. It has been shown that this kind of
pore indistinguishability happens for slit-shaped pores that can accommodate three
adsorption layers (pore size of about 10 Å) [125]. Theories that are beyond the
BET method, or additional adsorption data, are required to effectively separate the
monolayer capacity from the pore filling.

According to Eq. (12), in addition to the monolayer capacity, the other source
of error in the BET method is the molecular cross-sectional area, σm . As shown
by Brunauer and coworkers in their 1937 [126] and 1938 [114] papers, and some-
what later in the monograph by Brunauer [127], the close packing of the adsorbate
molecules on the substrate surface results in a surface area permolecule that is 7–19%
smaller than expected, based on the density of the bulk liquid for these same gases. In
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principle, the molecular cross-sectional area should be correlated to the packing state
of the monolayer, and they should vary with the adsorbent, adsorption temperature
and the choice of reference system (usually nitrogen is used as reference [128–
130]). However, in practice, people usually treat the molecular cross-sectional area
as a constant. Based on the liquid packing of the layer, values of the molecular cross-
sectional area of 16.2 Å2 and 13.8 Å2 have become conventional for nitrogen and
argon adsorption, respectively [131]. The practical reasons for choosing a constant
σm might be obvious: it is convenient; and for adsorption in microporous materials,
the error in obtaining the correct monolayer capacity is usually larger than that of
the choice of the molecular cross-sectional area, and sometimes the errors in nm and
σm may compensate each other. Nevertheless, we should still keep in mind that the
choice of molecular cross-sectional area also matters in surface area calculations.

Beyond the BETEquation Since the original work of Langmuir [111] and Brunauer
et al. [114], no major breakthrough has been made in the field of adsorption theory.
This is partly because theBET theory is convenient and simple, and it has alreadybeen
proved suitable for characterizing both porous and non-porous materials [132]. Most
of the real porous materials contain hierarchical pores and pore connectivity, making
the development of a general adsorption theory very difficult. Recently, advances in
machine learning (ML) techniques [133] have opened up a new route to estimating
the SSA from experimental data; in principle, such data do not necessarily have to be
the physisorption isotherms. Figure 10 shows a general supervised ML workflow. In
the case of predicting the surface area, a set of features that can describe the materials
is first designed. Features need to be experimentally measurable, representative, and
informative. A set of training data are then prepared, and they include representative
materials, whose surface area (label) has been accurately pre-calculated from either
simulation or direct measurement. The ML model (e.g., artificial neural networks

Fig. 10 A general supervised machine learning workflow
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[133]) is subsequently trained using the training set with features as input and labels
as the output target. If the MLmodel is properly trained without overfitting or under-
fitting, it can then be used to predict the surface area of other unseen materials
by simply feeding the features of those materials into the well-trained ML model.
The advantage of the ML method is clear: it enables prediction of the surface area
through this large-scale regression algorithmwithout knowing the underlying physics
of adsorption. This, however, can also be considered a disadvantage, as most ML
models operate as “black boxes” that do not provide physical insight on the process.
Attempts to use ML methods for surface area predictions have only been made very
recently. Datar et al. [134] considered the mean loading in various pressure regions
of the isotherm as the feature. They trained the least absolute shrinkage and selec-
tion operator (LASSO) model [135], using a training set of more than 300 MOFs
with diverse structures and pre-calculated true monolayer surface area. They have
shown that the ML model outperforms the BET method in the entire surface area
region (see Fig. 11). In addition to extracting the materials’ structure information
from the normal adsorption isotherm, the micro-computed tomography (micro-CT)
X-ray images can also serve as the input data [136]. With the power of convolutional
neural networks [137], Alqahtani et al. [136] were able to predict the porosity, SSA,
and average pore size for each input image. Although the physisorption isotherm still
remains one of the most accessible sources of data for many laboratories, the ML
methods open up a lot of possibilities to extract information from various sources of
data, thus providing a more flexible, general and fast way to predict the properties
of porous materials.

Fig. 11 Comparison between the predicted surface area by the BET method (satisfying the four
consistency criteria of Rouquerol et al. [117]) and by the machine learning (ML) model. The ML
model offers overall excellent prediction over a wide range of areas in agreement with the true
surface area from molecular simulations. Adapted with permission from Ref. [134]. Copyright
(2020) American Chemical Society
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4 Concluding Remarks and Future Perspective

In this chapter, we have reviewed the characterization of the PSD and the SSA
of porous materials by model-based hybrid methods. These methods extract
the structural information of the materials from the experimental physisorption
isotherms.

For PSD analysis, we have first introduced the classical methods, including those
based on theKelvin equation formesopore analysis, and those formicropore analysis
(MP method, DR/DA method, and HK method). The basics of the modern molec-
ular methods (DFT and GCMC simulation) based on statistical mechanics are also
explained. The modern molecular methods are superior to the classical methods in
the complete pore size range, and they are recommended for routine PSD analysis.

For SSA analysis, we have focused on the kinetic theory (Langmuir and BET
equations), and the application of the BET method for characterization of micro-
porous materials. With the four consistency criteria proposed by Rouquerol et al.
[117] and the recently proposed BET+ESW method, the BET equation is able to
determine the surface area of the porous materials having micro- and mesopores.
The accuracy of the BET surface area, however, should be cautiously examined with
the understanding of the pore structure (e.g., PSD, pore geometry).

Some current challenges for the PSD and surface area analysis, and possible future
directions are summarized as follows:

1. The current state-of-the-art methods for rapid characterization of the PSD
are those based on statistical mechanics, namely DFT or GCMC simulations.
However, more experimental evidence is needed to refine the effective solid-
fluid potentials (in DFT methods) [138–141] and the pore models (in GCMC
simulations). Only a few pre-calculated kernels for specific materials and pore
geometries (such as a slit-shaped carbon pore) are typically available in the
commercial software, yet those kernels are often used to characterize novel mate-
rials with varied chemical compositions and pore shapes (e.g., MOFs), which is
in principle incorrect, and it often results in misleading PSDs even if the fit to
the experimental isotherm is good. Resolving this discrepancy would require a
rational strategy to combine a set of kernels representing the surface chemistry
and pore geometry of the materials, with algorithms for fast generation of the
custom kernels.

2. Due to the simplified assumptions, it is impossible to apply the BET equation
to any materials with hierarchical pore structures. Especially, the BET equation
will fail whenmonolayer formation and pore filling occur simultaneously. Recent
developments inML-basedmethods provide a new route for fast characterization
of surface area. We anticipate that new, general ML models with the ability to
predict the surface area of materials over the entire range of pore sizes will
be developed in the near future. This involves the development of advanced ML
algorithms and design of suitable feature set. It should be noted that, however, the
MLmodel is usually trainedwith the simulation data (i.e., simulated isotherm and
geometric surface area). When applying those simulation-data-trained models to
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predict surface area in practice, the fidelity of materials’ models in simulations
should be carefully checked, so that the established correlation between features
and labels can be safely translated from simulated world to the real world.

3. Some materials are not rigid and have a flexible skeleton. The deformation of
the structure during the adsorption process [142] can affect the surface area and
PSD analysis of the material. Future characterization tools should consider this
effect to provide a more complete description of porous materials.
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