
J. Chem. Phys. 154, 084502 (2021); https://doi.org/10.1063/5.0044487 154, 084502

© 2021 Author(s).

Can we define a unique microscopic
pressure in inhomogeneous fluids?
Cite as: J. Chem. Phys. 154, 084502 (2021); https://doi.org/10.1063/5.0044487
Submitted: 16 January 2021 . Accepted: 25 January 2021 . Published Online: 22 February 2021

 Kaihang Shi,  Erik E. Santiso, and  Keith E. Gubbins

https://images.scitation.org/redirect.spark?MID=176720&plid=1401534&setID=378408&channelID=0&CID=496958&banID=520310234&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ed5dd4029e63a2f75704dfd96619305ac85f9c8d&location=
https://doi.org/10.1063/5.0044487
https://doi.org/10.1063/5.0044487
http://orcid.org/0000-0002-0297-1746
https://aip.scitation.org/author/Shi%2C+Kaihang
http://orcid.org/0000-0003-1768-8414
https://aip.scitation.org/author/Santiso%2C+Erik+E
http://orcid.org/0000-0003-0546-080X
https://aip.scitation.org/author/Gubbins%2C+Keith+E
https://doi.org/10.1063/5.0044487
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0044487
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0044487&domain=aip.scitation.org&date_stamp=2021-02-22


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Can we define a unique microscopic pressure
in inhomogeneous fluids?

Cite as: J. Chem. Phys. 154, 084502 (2021); doi: 10.1063/5.0044487
Submitted: 16 January 2021 • Accepted: 25 January 2021 •
Published Online: 22 February 2021

Kaihang Shi,a),b) Erik E. Santiso,b) and Keith E. Gubbinsb)

AFFILIATIONS
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA

a)Current address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
b)Authors to whom correspondence should be addressed: kaihangshi0@gmail.com; eesantis@ncsu.edu; and keg@ncsu.edu

ABSTRACT
The estimation of a microscopic pressure tensor in an adsorbed thin film on a planar surface remains a challenge in both experiment and the-
ory. While the normal pressure is well-defined for a planar surface, the tangential pressure at a point is not uniquely defined at the nanoscale.
We report a new method that allows us to calculate the local pressure tensor and its spatial integral using an arbitrary contour definition of the
“virial-route” local pressure tensor. We show that by integrating the local tangential pressure over a small region of space, roughly the range
of the intermolecular forces, it is possible to define a coarse-grained tangential pressure that appears to be unique and free from ambiguities in
the definition of the local pressure tensor. We support our argument by presenting the results for more than ten types of contour definitions
of the local pressure tensor. By defining the coarse-grained tangential pressure, we can also find the effective thickness of the adsorbed layer
and, in the case of a porous material, the statistical pore width. The coarse-grained in-layer and in-pore tangential pressures are determined
for Lennard-Jones argon adsorbed in realistic carbon slit pores, providing a better understanding of the pressure enhancement for strongly
wetting systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0044487., s

I. INTRODUCTION

For a small system that is in thermodynamic equilibrium with a
bulk fluid phase, such as an adsorbate within a nano-porous adsor-
bent, a small liquid drop, or a nanoparticle, many thermodynamic
functions are not uniquely defined at the nanoscale. Using the clas-
sification of thermodynamic variables introduced by Griffiths and
Wheeler,1 the “field” variables (variables that take the same val-
ues in two or more coexisting phases) are well-defined at all scales;
for the examples cited, the field variables are the temperature and
the chemical potentials. However, the “densities” (first derivatives
of the thermodynamic potential, such as the specific volume, spe-
cific entropy, pressure, or number density) are usually not uniquely
defined. Familiar cases include the volume or density of adsor-
bate molecules within a narrow pore. If we focus on the adsorbed
nano-phase as the system, we must define a system boundary. For
a narrow pore in a solid, two common choices are to draw the
boundary through the nuclei of the atoms on the solid surface that
forms the pore wall (the “physical width,” as determined by neutron

diffraction, for example) or to define a boundary that allows for
“dead space” near the wall, which is impenetrable to adsorbate
molecular centers under normal conditions (the “effective width”).
For argon in narrow pores of the order, say, 1 nm width, these two
definitions of pore volume are quite different; for a carbon pore
of 1 nm physical width, the effective width is about 0.42 nm so
that the physical width is more than twice the effective one. The
pressure is similarly non-unique at very small scales. In the case
of the pressure, the reason for the non-uniqueness arises because
there is no unique way to assign the pair forces between molecules
to a particular point in space.2 This seems to have been appar-
ent to both Maxwell3 and Boltzmann4 in the nineteenth century,
although their discussion was mostly focused on violations of the
second law.

Despite the non-uniqueness at the nanoscale, once the system
boundary is chosen, the volume can often be determined experi-
mentally, from diffraction or adsorption measurements, for exam-
ple. The non-uniqueness of the local pressure for an adsorbed layer
or nano-phase is more subtle. Because of the inhomogeneity, the
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pressure, P, is a second-order tensor, with component Pαβ giving
the force per unit area in the β-direction acting on a surface-element
normal to the α-direction. In the absence of external fields, the con-
dition of mechanical equilibrium is given by the gradient of the
pressure tensor,5

∇ ⋅ P = 0. (1)

Although the gradient of P is well-defined, this is insufficient to
uniquely define P itself. The local pressure tensor is the sum of a
kinetic (ideal gas) part and a configurational (due to intermolec-
ular forces) part, P(r) = PK (r) + PC(r), where the kinetic pressure
tensor is well-defined and is given by PK (r) = ρ(r)kBT1, where ρ(r)
is the molecular number density at a point r, kB is the Boltzmann
constant, T is the temperature, and 1 is the second-order unit ten-
sor. However, the configurational contribution, PC(r), by the virial
(or mechanical) route2,5 involves an integration over an arbitrarily
defined contour path connecting the center of mass of two molecules
at locations ri and rj (see Sec. II A). This difficulty was first recog-
nized by Irving and Kirkwood (IK) in their paper in 1950:2 “This
definition of the force ‘acting across dS’ is quite arbitrary, and with
another definition we would obtain a different expression for the point
function stress tensor. But all definitions must have this in common—
that the stress between a pair of molecules be concentrated near the
line of centers.” The local stress tensor at time t, σ(r, t), is related to
the local pressure tensor by ⟨σ(r, t)⟩ = −P(r), where ⟨. . .⟩ denotes
the ensemble average; IK defined the contour to be a straight line
connecting centers of molecules (i.e., Irving–Kirkwood or IK defi-
nition). Alternative, but equally valid, contour definitions are possi-
ble; a popular choice is that of Harasima,6,7 the definition of which
is composed of two orthogonal line segments in planar geometry.
Many efforts have been devoted over the past few decades in the
hope of finding a unique expression for the local pressure/stress ten-
sor. Mistura8 argued that the local pressure tensor can be uniquely
defined by the IK definition but made an unjustified assumption
that the contour path is physically equivalent to the shortest dis-
tance (straight line) between two molecules. Later, Baus and Lovett9

claimed that the ambiguity in the local stress tensor can be elim-
inated by imposing St. Venant’s condition. However, Rowlinson10

immediately pointed out that the Baus–Lovett formulation leads to
a vanishing surface tension, and Rowlinson’s argument, in our opin-
ion, has not been convincingly refuted by Baus and Lovett in their
follow-up publications.11,12 Wajnryb et al.13 concluded that the IK
definition is the unique choice by imposing additional conditions
(e.g., symmetry and translational and rotational invariance) on the
tensor. However, the authors implicitly considered the IK definition
as the only valid choice of contour during their proof; similar con-
cerns about the work were also raised by Hafskjold and Ikeshoji.14

Recently, Rossi and Testa15 argued that if the stress tensor is identi-
fied as the tensor that multiplies the deformation tensor to express
the work done by the system under an infinitesimal local defor-
mation, such a local stress tensor is then uniquely defined, and it
has an appearance similar to the Harasima definition. Until now,
no consensus has been reached in the field on the uniqueness of
the local pressure tensor, and there is no convincing general jus-
tification for choosing one contour definition over the other. The
thermodynamic route16–19 to the local pressure tensor suffers the
same issue as the virial one because there are an infinite number of

ways to distribute the pair potential energy in space between the two
molecules.

Despite its non-unique nature, the local pressure tensor plays
an important role in understanding the mechanical stability of
lipid bilayers,20–23 proteins in glassy matrices,24 and a liquid film
suspended in the vapor.25 For gas–liquid26,27 and liquid–solid28,29

nucleation, the local pressure profile provides a mechanical picture
of the nano-nucleus and its interface and is useful for calculating the
Tolman length for interfacial free energy.28 In addition, the pres-
sure tensor is required in the virial (or mechanical) route to the
surface tension of planar,30,31 spherical,26,30 and cylindrical32 inter-
faces. Recently, the local pressure tensor has been used to character-
ize confined phases,33–35 motivated by high-pressure phenomena in
adsorbed layers observed in both experiments and simulations.36,37

These high-pressure phenomena include chemical reactions that
normally require a high pressure (e.g., 10 000 bars or more)38,39 and
the formation/stabilization of a high-pressure phase structure40–43 in
nanopores. The non-uniqueness of the local pressure, however, leads
to confusion in interpreting the results and sometimes can lead to
heated discussion.37,44

In this paper, we consider the possibility of defining a coarse-
grained pressure tensor that is independent of the integral contour
chosen between molecules i and j by averaging the local pressure
tensor, P(r), over some domain, Δr, for a system of planar geometry
(for example, a thin film adsorbed on a planar solid substrate or in
a slit-shaped pore). We note that the coarse-grained pressure/stress
tensors designed by Hardy,45 Cormier et al.,46 Ikeshoji et al.,47 and
Heinz48 are essentially different from ours; the averaging volume
in their definitions is unrestricted, and thus, the resulting coarse-
grained pressure/stress can still be subject to the arbitrary choice
of the integral contour. In Sec. II, we present the local pressure
tensor equations for four arbitrary contour definitions for planar
geometry, and we formulate a coarse-grained tangential pressure
that is expected to be unique over some characteristic domain, Δr.
To support our argument, we performed grand canonical Monte
Carlo (GCMC) simulations to investigate the local tangential pres-
sure profile and its spatial integral of Lennard-Jones (LJ) argon
adsorbed in a carbon slit-shaped pore. In Sec. III, simulation details
are provided. In Sec. IV, we present a new method that allows
for the calculation of the pressure integral (and the local pressure)
using any arbitrary contour. Evidence from molecular simulations
is presented to support the uniqueness of our coarse-grained tan-
gential pressure. Based on the different length scales over which
the coarse-grained tangential pressure appears to be unique, we
can define the effective thickness of the layer and a statistical pore
width. We report calculations of the coarse-grained in-layer and
in-pore tangential pressure profiles for a range of pore widths and
adsorbate–solid interaction strengths. In Sec. V, we summarize our
findings.

II. THEORY
A. Local pressure tensor for planar geometry

For an interface of planar geometry lying in the xy-plane of
Cartesian coordinates, it follows from symmetry considerations and
the condition of mechanical stability [Eq. (1)] that the pressure

J. Chem. Phys. 154, 084502 (2021); doi: 10.1063/5.0044487 154, 084502-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

component normal to the surface, PN = Pzz , is a constant and inde-
pendent of z, as well as of x and y, and that the other two diagonal
elements in the pressure tensor, Pxx(z) = Pyy(z), represent the tan-
gential pressure, PT(z), parallel to the surface. In the absence of
strain, the off-diagonal elements are 0.

If the interactions are pairwise additive, the configurational
contribution to the local pressure tensor by the virial route is
given by5,49

PC(r) = 1
2
⟨∑

i≠j
Fij ∫

Cij

dl̃δ(r − l̃)⟩, (2)

where the angular bracket ⟨. . .⟩ indicates the ensemble average, Fij is
the force vector between the ij particle pair, and the prefactor 1/2 is
to avoid double counting of particles. Cij is an arbitrary contour con-
necting the ij-pair (in the direction from i to j), and δ(x) is the Dirac
delta function. In Cartesian coordinates, Eq. (2) can be rewritten in
the form

PC(r) =
1
2
⟨∑

i≠j

rij

rij
Fij ∫

Cij

dl̃δ(x − xl)δ(y − yl)δ(z − zl)⟩, (3)

where vector rij = rj − ri, Fij = −du(rij)/drij is the ij-pair force, u(rij)
is the pair potential between particles i and j separated by a scalar
distance rij, and xl, yl, and zl are Cartesian coordinates along the
contour vector l̃.

The definition of the integral contour in Eq. (2) is not unique.
Irving and Kirkwood (IK)2 defined a straight line connecting the
centers of the two molecules [see Fig. 1(a)]; if this line crosses the
element of the surface, the pair force contributes to the pressure.

FIG. 1. Four different contour definitions for the local pressure tensor [Eq. (2)]
in a planar geometry. (a) Irving–Kirkwood (IK) definition. (b) Harasima (H) defi-
nition. (c) A variation of the Irving–Kirkwood (IK-VR) definition. (d) A variation of
the Harasima (H-VR) definition. For each definition, the contours Cij (in black) and
Cji (in orange) are equivalent; since they overlap for the IK and H-VR definitions,
only the contour Cij is plotted for clarity. For each of these contours, the zl values
remain between zi and zj .

Due to its convenience for arbitrary geometry24 and its consistency
in different coordinate systems (spherical14,50 and cylindrical51), the
IK definition of the contour has been widely accepted. The expres-
sion of the local tangential pressure by the IK definition can be
written as31,52

PT,IK(z) = ρ(z)kBT

− 1
2S
⟨∑

i<j

xij
2 + yij

2

rij

1
∣zij∣

du(rij)
drij

H( z − zi

zij
)H( zj − z

zij
)⟩,

(4)

where S is the surface area of the xy-plane, H(x) is the Heaviside
step function, and xij, yij, and zij are the components of the vector
rij. The first term on the right-hand side of Eq. (4) is the kinetic con-
tribution to the pressure, and the second term is the configurational
contribution, averaged from Pxx and Pyy.

The other widely used definition of the integral contour is the
Harasima (H) definition.6,7 It defines a path Cij, first running from
the position of particle i (xi, yi, zi) in the direction parallel to the
surface to the position (xj, yj, zi) and then vertically to the position of
particle j (xj, yj, zj). The path, Cji, starting from particle j is symmetric
and equivalent to Cij, as shown in Fig. 1(b). The H definition leads
to a simpler local tangential pressure equation,31

PT,H(z) = ρ(z)kBT

− 1
4S
⟨∑

i<j

xij
2 + yij

2

rij

du(rij)
drij

[δ(z − zi) + δ(z − zj)]⟩. (5)

The physical meaning of the delta function in Eq. (5) is that the
configurational part only contributes to the tangential pressure at
planes where molecules are present. This feature makes the H def-
inition compatible with the non-pairwise reciprocal-space term in
the Ewald summation method;22,51,53,54 thus, the H definition is pre-
ferred over the IK definition due to its computational efficiency in
treating long-range electrostatic interactions. However, the H defi-
nition has also been shown to be inappropriate in polar coordinates
due to the singularity at the polar origin.14,50,51 In practice, the delta
function can be approximated as

δ(z − zi) = lim
ξ→0

1
ξ

H[z − (zi − ξ/2)]H[(zi + ξ/2) − z]. (6)

Apart from the IK and H definitions, we devised two additional
integral contours for the local pressure tensor. One of them corre-
sponds to a variation of the Irving–Kirkwood (IK-VR) definition.
Figure 1(c) depicts the IK-VR definition of the integral contour. The
contour Cij goes from particle i vertically to point A of (xi, yi, zA),
where zA = (zi + 2zj)/3 is at a distance 2zij/3 from particle i, and then
straight to particle j. For the equivalent contour Cji from particle j
to particle i, as plotted in Fig. 1(c), we have zA′ = (zj + 2zi)/3. The
final equation for the local tangential pressure is averaged from both
contours Cij and Cji, and we have (see Appendix A for derivation)
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PT,IK−VR(z) = ρ(z)kBT − 1
4S
⟨∑

i<j

xij
2 + yij

2

rij

du(rij)
drij

3
∣zij∣

×[H( z − zA

zij/3
)H( zj − z

zij/3
)+ H( zA′ − z

zij/3
)H( z − zi

zij/3
)]⟩.

(7)

The other new contour that we devised in this work is a varia-
tion of the Harasima definition (H-VR), as shown in Fig. 1(d). The
contour Cij goes from particle i vertically to point A of (xi, yi, zm),
where zm = (zi + zj)/2 is the middle z-position between the ij-pair,
then horizontally to point B (xj, yj, zm), and eventually to particle
j. The local tangential pressure equation for this H-VR definition is
(see Appendix A for derivation)

PT,H−VR(z) = ρ(z)kBT − 1
2S
⟨∑

i<j

xij
2 + yij

2

rij

du(rij)
drij

δ(z − zi + zj

2
)⟩.

(8)

The equation to calculate the local normal pressure is the same for
all the above contour definitions and is given by

PN(z) = ρ(z)kBT − 1
S
⟨∑

i<j

zij
2

rij

1
∣zij∣

du(rij)
drij

H( z − zi

zij
)H( zj − z

zij
)⟩.

(9)

Although the normal pressure in Eq. (9) is written as a function
of the z-distance, it is essentially a unique constant throughout the
system due to the mechanical equilibrium condition [Eq. (1)].

B. “Unique” coarse-grained pressure tensor
for adsorbed layers

A common practice to avoid the non-uniqueness of the local
pressure tensor is to average it over the entire system. From Eq. (2), it
is straightforward to see that spatially averaging PC(r) over the whole
system space (to include all interacting pairs and contours) leads to
a quantity that is independent of the arbitrary integral contour. For
slit geometry, the pore wall is often modeled by an external field,

Vext(D) = φ(D) + φ(H −D), (10)

and the 10-4-3 Steele potential is taken for fluid-carbon wall interac-
tions,55

φ(D) = 2πεasρsσ2
asΔ[

2
5
(σas

D
)

10
− (σas

D
)

4
− σ4

as

3Δ(D + 0.61Δ)3 ], (11)

where D is the distance of adsorbate sites from the graphite surface,
εas and σas are the energy and size parameter for the adsorbate–
solid interaction, ρs is the density of carbon atoms in graphite
(ρs = 0.114 Å−3), andΔ is the spacing between two adjacent graphene
layers (Δ = 3.35 Å). In this case, it is usual to average the local pres-
sure tensor over the entire (physical) pore width H to give a unique
in-pore pressure.56 Here, we would like to take one step further to

explore the smallest domain over which the coarse-grained pressure
tensor is unique, and meanwhile, we expect that this coarse-grained
pressure tensor has direct physical significance, for example, repre-
senting the microscopic pressure for an adsorbed layer. Because the
normal pressure component in the planar pressure tensor is well-
defined, we focus on the tangential pressure component in the rest
of this paper.

A typical density profile of an adsorbed fluid near a solid wall
is shown in Fig. 2. In this subsection, for convenience, we assume
that the wall is structureless and is modeled by an external field that
only depends on the vertical distance to the flat surface [e.g., the 10-
4-3 Steele potential in Eq. (11)]; thus, the wall potential does not
contribute to the tangential pressure. We attempt to split the system
into small bins, and each bin is designed to contain one density peak
and has a width comparable to the thickness of the layer (see Fig. 2).
A coarse-grained (cg) (in-layer) tangential pressure in the kth bin
would be defined as

Pcg
T,k =

1
Δrk
∫
Δrk

PT(z)dr

= 1
Δzk
∫

z0,k+Δzk

z0,k

PT(z)dz, (12)

where Δrk = SΔzk is the volume of the kth bin and Δzk is the
characteristic length (or width) of the kth bin; z0,k is the lower
bound of the kth bin. To make the coarse-grained tangential pres-
sure defined in Eq. (12) unique, we have to find the integration range,
(z0,k, z0,k + Δzk), over which the pressure integral in the numerator
yields a unique value, regardless of the arbitrary contour definition
adopted. This is equivalent to taking a spatial integration of the
local tangential pressure, starting from the lower boundary of the
system (in the z-direction), and locating, regardless of the contour
definition chosen, points where the integral for the different con-
tours converges; the integration range for Eq. (12) is then defined
between proper convergence points. In what follows, we analyze the

FIG. 2. A typical density profile of an adsorbed fluid near a solid planar wall. The
system is binned in the z-direction normal to the solid wall for the calculation of the
coarse-grained tangential pressure, and the bin width Δzk for the kth bin (k = 1,
2, . . .) is comparable to the thickness of an adsorbed layer.
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possibility of finding such convergence points in the pressure
integral curve.

We can start from the configurational part of the xx-
component tangential pressure in the pressure tensor [Eq. (A2) in
Appendix A],

PC
xx(z) =

1
2S
⟨∑

i≠j

xij

rij
Fij ∫

Cij

dl̃xδ(z − zl)⟩, (13)

where l̃x is the x-component of the contour vector. We now integrate
Eq. (13) from the lower bound of the system, zwall (the z-position of
the solid wall), and we have

I(z) = 1
2S
⟨∑

i≠j

xij

rij
Fij ∫

z

zwall

dz′ ∫
Cij

dl̃xδ(z′ − zl)⟩. (14)

In this work, we assume that all valid contours for planar geometry
are restricted to lie between the ij-pair (i.e., the contours follow val-
ues zl between zi and zj); this avoids contours that pass through part
of the adsorbent wall. We shall refer to such contours as “valid” con-
tours in what follows. Before performing the integration with respect
to the dummy variable z′ in Eq. (14), we separate ij-pairs into three
groups: (1) Group “A” contains the ij-pairs for which both molecule
i and molecule j are within the integration range; thus, the contour
connecting these two molecules satisfies zwall ≤ zl ≤ z. (2). Group
“B” contains the ij-pairs for which one of the molecules in the pair
(equivalently, a part of the contour) is outside the integration range.
(3). Group “C” contains the ij-pairs for which both molecules in the
pair are outside the integration range. For the first case, the inte-
gration with respect to z′ is unity, i.e., ∫ z

zwall
dz′δ(z′ − zl) = 1. For

the third case, the integration with respect to z′ is 0 (since the delta
function is 0). Equation (14) now can be rewritten as

I(z) = 1
2S
⟨

A

∑
i≠j

xij

rij
Fij ∫

Cij

dl̃x +
B

∑
i≠j

xij

rij
Fij ∫

z

zwall

dz′ ∫
Cij

dl̃xδ(z′ − zl)⟩.

(15)

The contour integral for the ij-pairs in Group “A” is simply
∫Cij

dl̃x = xij. Carrying out the integration analytically for the ij-pairs
in Group “B” leads to

I(z) = 1
2S
⟨

A

∑
i≠j

xij
2

rij
Fij⟩ +

1
2S
⟨

B

∑
i<j

xij

rij
Fij[∫

z

zwall

dz′ ∫
Cij

dl̃xδ(z′ − zl)

− ∫
z

zwall

dz′ ∫
Cji

dl̃xδ(z′ − zl)]⟩

= 1
2S
⟨

A

∑
i≠j

xij
2

rij
Fij⟩ +

1
2S
⟨

B

∑
i<j

xij
2

rij
FijfC[λij(z)]⟩, (16)

where

fC[λij(z)] = {(xin + xim)/xij zi ≤ zj
(xjn + xjm)/xji zi > zj,

(17)

where point n and point m are intersections of contours Cij and Cji
with the plane at position z, respectively, and xin is the x-component
of the vector rin, for example. Therefore, the value of the function
defined in Eq. (17) depends on the arbitrarily valid contour (sub-
script “C” reminds us of this dependence). Given a contour defini-
tion, the function f C is determined by λij(z) = (z − min(zi, zj))/|zij|,
where min(. . .) returns the minimum value in a list of arguments, as
illustrated in Fig. 3(a). The interchange of the particle (molecule)
identity in the ij-pair will not alter the value of f C[λij(z)]. By
acknowledging that the contours Cij and Cji are equivalent and sym-
metric (due to the indistinguishability of particles i and j), we can
show that the function f C must satisfy the following conditions for
any valid contour definition:

(1) For ij-pairs in Group “B” [the second term on the right-hand
side of Eq. (16)], the value of λij(z) ranges from 0 to 1, and
the function must pass through points (λij = 0, f C = 0) and
(λij = 1, f C = 2).

(2) Function must pass through the middle point (λij = 0.5,
f C = 1), as shown in Fig. 3(b).

(3) Function must be symmetric about the middle point (λij = 0.5,
f C = 1), i.e., f C(λij) + f C(1 − λij) = 2 (see Appendix B for
proof).

We wish to evaluate the possibility of having convergence
points in the integral curve, I(z), such that, no matter what valid con-
tour definition is used, the integral curve will always pass through
those points. The first term on the right-hand side of Eq. (16) is
unique, while the second term has the contour dependence included
in the function f C. Since f C is coupled to the ij-pair forces, a rigorous
proof of the existence of the convergence points that are indepen-
dent of the contour definitions will be non-trivial, and the values for
such convergence points are expected to be system-dependent. If we
assume an extreme case where the density profile of each adsorbed
layer behaves like a delta function (i.e., all molecules in the same
layer lie on the same z-plane) and short-range interactions where
only the nearest neighboring layers interact with each other, from
the symmetric argument of the contour (see the second condition
that f C satisfies), it is obvious that the convergence point exists. In
this case, the integration range that makes the coarse-grained tan-
gential pressure [Eq. (12)] unique in the first adsorbed layer is [zwall,
(z1 + z2)/2], where z1 and z2 are the z-positions of the first and the
second layer, respectively, and here, the lower bound z0,1 is chosen as

FIG. 3. Illustration for the calculation of function f C[λij (z)] defined in Eq. (17), in the
case of zi ≤ zj , for (a) the general situation and (b) the situation where λij = 0.5 and
f C = 1, where λij (z) = (z − min(zi , zj ))/|zij |. Point n and point m are intersections of
arbitrarily valid contours Cij and Cji with the z-plane, respectively.
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zwall. For real cases, it would be interesting to integrate the local tan-
gential pressure numerically to see if the convergence points exist.
This will help justify the uniqueness of the coarse-grained tangential
pressure.

In the rest of this paper, we will first evaluate Eq. (16) numer-
ically using more than ten types of valid contour definitions for LJ
argon confined in a structureless slit pore, modeled by Eqs. (10) and
(11). For a more realistic system where the solid wall is modeled by
a fully atomistic one, the contribution to the local tangential pres-
sure from the adsorbate–solid interactions will be accounted for. We
calculate the local tangential pressure explicitly using IK, H, IK-VR,
and H-VR definitions in realistic pore models and investigate the
corresponding pressure integral.

III. SIMULATION DETAILS
Grand canonical Monte Carlo (GCMC) simulations57 were car-

ried out to model LJ argon adsorbed in carbon slit-shaped pores at
T = 87.3 K and Pbulk = 1 bar. The chemical potentials of the adsorbate
(μ), pore volume (V), and temperature (T) were fixed in the simu-
lation. The adsorbate–adsorbate (aa) interaction was represented by
the 12-6 LJ potential,

u(r) = 4εaa[(
σaa

r
)

12
− (σaa

r
)

6
], (18)

where εaa/kB = 119.8 K is the LJ energy parameter and σaa = 3.405 Å
is the LJ diameter for argon molecules. For the structureless pore
model, Eqs. (10) and (11) were used in the simulation. For a more
realistic pore model, the pore wall was represented as rigid graphite
with three perfect graphene sheets stacked in an ABA pattern par-
allel to the xy-plane. Graphene sheets were spaced 3.35 Å apart.
Two graphite solid blocks were placed in symmetry about the pore
center at z = 0 to simulate a semi-infinite slit-shaped pore. The lat-
eral dimensions of the pore surface were set to 68 × 34.08 Å2. An
open space having a size (in the x-direction) of 60 Å was added to
both ends of the pore so that the pore has direct contact with the
bulk phase. Periodic boundary conditions were applied in both x-
and y-directions, and the hard-wall boundary condition was used
for the z-direction. A schematic plot of the realistic pore model is
drawn in Fig. 4(a). The interactions between the LJ argon and the
pore atoms were modeled in the same way as that of adsorbate–
adsorbate interactions but with aa interaction parameters replaced
by the adsorbate–solid (as) interaction parameters. The LJ param-
eters for carbon atoms55 were taken to be σss = 3.4 Å and εss/kB
= 28.0 K, and the cross-diameter σas was calculated from the Lorentz
combining rule,58 i.e., σas = (σaa + σss)/2. The cross-energy parame-
ter, εas, was adjusted to give a particular value of the wetting parame-
ter,59,60 which is a measurement of the degree to which the adsorbate
wets the wall,

αw = ρsσ2
asΔ(

εas

εaa
). (19)

We investigated cases where the wetting parameter αw equals 1,
2.14 (corresponding to Ar/graphite based on the Berthelot com-
bining rule,61 εas =

√
εaaεss), and 5, mimicking the physisorption

FIG. 4. (a) Schematic plot of the simulation box for a realistic pore model. Physical
pore width is H. The blue region is the averaging region (with a length of ∼5σaa

in the x-direction) where the sampling was performed. The averaging region was
placed deep inside of the pore; thus, the pore edge effects were negligible. Cyan
particles are LJ argon, and gray particles are solid atoms. (b) Illustrative examples
of calculating the local pressure tensor in the averaging region. If both particles in
the pair are inside the averaging region, such as the A–B interaction, its contribu-
tion to the local pressure tensor can be calculated by the standard equations. If
either one of the interacting particles is outside the averaging region, only the con-
tour that is inside the region should be accounted for, such as the solid line part for
the C–D interaction (H definition) and for the E–F interaction (IK definition). If both
particles in the pair are outside the averaging region, such as the G–H interaction,
it does not contribute to the pressure tensor.

behavior from a weakly wetting one to a strongly wetting one. The
cutoff radius for the 12-6 LJ potential was chosen as rc = 5σaa,
which was large enough to neglect the impulsive contribution to the
pressure.16,51

The statistics (e.g., the local pressure tensor and the pressure
integral) were sampled in the entire simulation box and in the aver-
aging region (see Fig. 4) for the structureless pore model and the
realistic pore model, respectively. To calculate the local pressure ten-
sor in the realistic pore model, the averaging region was divided
into small bins in the z-direction with bin width w = 0.01 Å, and
the parameter ξ in Eq. (6) was set equal to the bin width w. Exam-
ples of calculating the local pressure tensor in the averaging region
are illustrated in Fig. 4(b). Displacement, insertion, and deletion
moves were first attempted with equal probability to fill the pore; the
probability of attempting a displacement move was then improved
to 0.98 to further equilibrate the condensed system for at least
5 × 107 moves. Statistics were collected from the following
2 × 107–5 × 107 configurations. Multiple independent runs for each
system were performed to enhance statistics. The chemical poten-
tial of argon in the bulk phase was calculated by the Lennard-Jones
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FIG. 5. Local normal pressure profile for argon adsorption in a realistic carbon slit
pore with H = 4σaa and αw ≈ 2.14, at 87.3 K and a bulk pressure of 1 bar. The total
normal pressure is decomposed into the kinetic and configurational (adsorbate–
solid and adsorbate–adsorbate) contributions. Since the pore wall was treated as
a rigid one, the solid–solid contribution to the pressure profile is neglected. The
total normal pressure is a constant within statistical uncertainties throughout the
pore, confirming the mechanical equilibrium of the system.

equation of state.62 We monitored the local normal pressure for each
slit pore system using Eq. (9) and observed that the normal pres-
sure is a constant within statistical uncertainties, confirming that all
systems have reached mechanical equilibrium inside the pore (see
Fig. 5, for example).

IV. RESULTS AND DISCUSSIONS
A. Numerical evidence for the uniqueness
of the coarse-grained tangential pressure

In this section, we provide numerical evidence from molecular
simulation to show that it is possible to find an appropriate inte-
gration domain over which the coarse-grained tangential pressure
defined in Eq. (12) has a unique value.

1. Structureless carbon slit pore
To calculate Eq. (16) from molecular simulation, we need to

construct the function f C(λij) first. The exact form of f C(λij) depends
on the choice of contour definition. According to the IK, H, IK-VR,
and H-VR definitions, we can write out the corresponding form for
f C(λij), that is, one contour definition maps to one functional form
(i.e., one-to-one mapping from three-dimensional space to a two-
dimensional xz-plane; see Fig. 3). In addition, we devised another
six types of valid contours and write out the corresponding forms
for f C(λij). Graphs of different functional forms are shown in Fig. 6,
and the mathematical formulas are presented in Table I. It should
be noted that there is a one-to-many mapping from a functional
form of f C(λij) to the corresponding contours in three-dimensional
space. Therefore, by calculating Eq. (16) using ten types of f C(λij),

FIG. 6. Graphs of function f C(λij ) that correspond to different contour definitions.
Mathematical formulas for the function are listed in Table I.

we are essentially investigating the properties of more than ten types
of contour definitions.

Figure 7 shows the density profile and the pressure integral
[Eq. (16)] using different contour definitions for LJ argon confined
in a structureless carbon slit pore of H = 10σaa and αw ≈ 2.14.
As predicted by Eq. (2), integrating the local tangential pressure
over the entire system to include all pairwise interactions leads to a

TABLE I. Mathematical formulas for function f C(λij ) that corresponds to different types
of contour definitions. Graphs of this function are shown in Fig. 6.

Contour definitions f C(λij)

IK 2λij

H
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 λij = 0
1 λij ∈ (0, 1)
2 λij = 1

IK-VR
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3λij λij ∈ [0, 1/3)
1 λij ∈ [1/3, 2/3]

3λij − 1 λij ∈ (2/3, 1]

H-VR
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 λij ∈ [0, 0.5)
1 λij = 0.5
2 λij ∈ (0.5, 1]

C5 8(λij − 0.5)3 + 1

C6 16(λij − 0.5)3 − 2λij + 2

C7 −29(λij − 0.5)9 + 4λij − 1

C8 25(λij − 0.5)3 − 6(λij − 0.5) + 1

C9
1

tanh(5) tanh(λij − 0.5
0.1

) + 1

C10
1

tanh(2.5) tanh(λij − 0.5
0.2

) + 1
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FIG. 7. (a) Reduced local number density profile ρ∗ = ρσaa
3 and (b) the spatial

integral of configurational contribution to the local tangential pressure [Eq. (16)]
using different contour definitions for LJ argon adsorption in a structureless carbon
slit pore with H = 10σaa and αw ≈ 2.14, at 87.3 K and a bulk pressure of 1 bar. The
characteristic length (integration range) that can lead to a unique coarse-grained
in-layer tangential pressure is marked in the plot.

convergent value that is independent of the arbitrarily valid con-
tour definitions. Interestingly, we observe that all integral curves
pass through the same point at a certain distance (within numeri-
cal uncertainty), indicating that it is possible to formulate a unique
coarse-grained tangential pressure defined between those conver-
gence points (see characteristic lengths, Δzk, k = 1, 2, . . ., marked
in Fig. 7). We observed similar converging behavior of the pres-
sure integral curves at other wetting parameters and narrower pores.
Moreover, the gradient of the pressure integral curve determines the
local tangential pressure. The sharp increase in the integral curve
near the structureless surface in Fig. 7(b) corresponds to a positive
peak of the local tangential pressure (here, only the configurational
contribution is accounted for), indicating strong repulsion between
molecules in the first adsorbed layer near the wall. Calculating the
local tangential pressure by differentiating Eq. (16) is advantageous:
without defining the contour explicitly, it allows us to explore the
entire valid contour space by creating appropriate functional forms
for f C(λij), as long as the new form satisfies the three conditions listed
in Sec. II B. This method can easily be extended to other components
in the pressure tensor.

2. Realistic carbon slit pore
For realistic carbon slit pores, instead of adapting Eq. (16) to

the new system, we calculated the local tangential pressure using the
conventional method (i.e., using the pressure equations in Sec. II A),
and the corresponding spatial integrals are then obtained from
these local values. Figure 8(a) shows a full-range local tangential

FIG. 8. (a) Local tangential pressure profile by different contour definitions (IK, H,
IK-VR, and H-VR) and (b) the corresponding spatial integral for argon adsorption
in a realistic carbon slit pore with H = 3σaa and αw ≈ 2.14, at 87.3 K and a bulk
pressure of 1 bar. A simulation snapshot is shown in the background, and the
particles are drawn at reduced scale for clarity; cyan particles in the center are
argon molecules, and gray particles are solid atoms. Peaks of the local tangential
pressure for IK, IK-VR, and H-VR definitions are similar and overlap. Points “A” to
“C” in (b) are intersections of the four integral curves, and the integration range for
the coarse-grained tangential pressure in an adsorbed layer should be (zA, zB), for
example.

pressure profile (including the region of the pore wall) by four
different contour definitions for LJ argon adsorbed in an atom-
istic carbon slit pore of H = 3σaa and αw ≈ 2.14. The local tan-
gential pressure includes both kinetic and configurational contri-
butions. As expected, different contour definitions lead to distinct
local tangential pressures. The positive pressure peak values for IK,
IK-VR, and H-VR definitions are similar in magnitude, while the
H definition shows a relatively lower peak value. The formation of
the dense layer is due to the strong attractive force field exerted
by the carbon wall.37 A negative tangential pressure is present in
the region between the adsorbed layer and the wall (2.5 Å ≲ |z| ≲
5 Å). Because the H definition only assigns the local pressure to
the position where a molecule/atom is located, negative pressure
pulses are observed at the z-position of the graphene sheets. A neg-
ative pressure is also observed between two adsorbed layers by the
IK, IK-VR, and H-VR definitions, indicating that two layers are in
tension.

The integration of the local tangential pressure from the lower
bound of the system, ∫ z

−Lhf
PT(z′)dz′, where Lhf = (H + 4Δ)/2 and Δ

is the spacing between two graphene sheets, is shown in Fig. 8(b). We
observe that these integral curves do not resemble the ones for the
structureless model because, in addition to the adsorbate–adsorbate
interaction, the adsorbate–solid interaction also now comes into
play. Nonetheless, the shape of the integral curve for each contour
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definition inside the pore is still qualitatively unchanged regardless
of pore models. As expected, the pressure integral curves by four
different contour definitions also converge at some points. The
z-position of convergence points “A,” “B,” and “C” marked in
Fig. 8(b) represents the desired lower/upper integration bounds for
the coarse-grained in-layer tangential pressure defined in Eq. (12).
The convergent behavior of the integral curves at a certain distance
in Fig. 8(b) is general. In Fig. 9, we present two examples for larger
pores (H = 4σaa and H = 7σaa). The local tangential pressure and

FIG. 9. Local tangential pressure profile by different contour definitions (IK, H, IK-
VR, and H-VR, upper panel) and the corresponding integral (bottom panel) for
argon adsorption in a realistic carbon slit pore with (a) H = 4σaa, (b) H = 7σaa, and
wetting parameter αw ≈ 2.14, at 87.3 K and a bulk pressure of 1 bar. The density
profiles of argon (dashed line) in reduced units are also plotted (read on the right-
hand vertical scale in a1 and b1), where ρ∗ = ρσaa

3. The profiles are plotted in a
range from the first convergent point to the last one inside the pore.

its corresponding numerical integral profiles in Fig. 9 are plotted in
a magnified view for clarity, from the first convergent point to the
last one inside the pore [e.g., from zA to zC in Fig. 8(b)]. By referring
to the density profile, we can clearly identify the convergent points
in the integral profile that correspond to the lower/upper bounds in
the calculation of the unique coarse-grained tangential pressure. We
noticed that the integral curves of the local tangential pressure by dif-
ferent contour definitions do not converge exactly to the same points
in calculations due to errors in the numerical integration (Trape-
zoidal rule) and uncertainties in the molecular simulation. However,
the extent by which the four integral curves deviate from the “aver-
aged” convergent point is of the same order of magnitude as the
numerical error when integrating the local tangential pressure over
the entire system, while in the latter case, we know that all integral
curves will converge to the same value. Due to the sharp increase in
the integral curves, it is also hard for us to identify the convergence
points that appear near some density peaks (see the contact layer
near the wall in Fig. 8, for example). Nevertheless, the results pro-
vide convincing evidence that it is possible to define a coarse-grained
tangential pressure over a well-defined domain, and this pressure
appears to be unique and independent of the valid contour definition
in the local pressure tensor.

B. Effective thickness of the adsorbed layer
and the statistical pore width

The thickness of the first adsorbed layer near the solid wall
is an important parameter in controlling the kinetics,63 thermody-
namics,64 and structure65,66 of adsorption systems. It can also be
used to define the boundary between the adsorbed phase and the
bulk gas phase in theoretical models.67,68 However, the determina-
tion of this quantity is still impeded by the lack of an objective and
unique definition of the concept of the “molecular thickness.” The
possibility to uniquely define a coarse-grained pressure tensor we
have shown in Sec. IV A provides a new perspective to solve this
ambiguity. The characteristic length for the kth layer, Δzk, can be
thought of as the effective thickness of the layer. From the numer-
ical integration results from Sec. IV A, we can readily determine
this characteristic length. In particular, the characteristic length for
the first adsorbed layer near the realistic pore wall, Δz1, at different
pore widths and wetting parameters is shown in Fig. 10. For small
pores (H ≲ 3σaa), the value of Δz1 is almost identical for all wet-
ting parameters studied. With the increase in the pore width, the
effective thickness of the first adsorbed layer is slightly larger for
αw = 1 than for 2.14 and is slightly smaller for αw = 5, which has
the fastest decaying rate among the three. This is because for large
pores, the adsorbed layer has more freedom to adjust its structure
according to the adsorbate–solid interaction strength, without being
restricted by the pore geometry. The stronger the adsorbate–solid
interaction is, the more ordered and compact the layer structure
will be. The effective thickness of the first layer in Fig. 10 (0.8σaa
∼ 1.1σaa) is in good agreement with the reported values based on
the density profile,69 mean-field criteria,67 and IR measurement.70

Our approach to determine the effective thickness of the mono-
layer has the following advantages over the current methods: (1) it is
applicable to any pore width (from the micropore to open surface),
(2) there are no empirical criteria (e.g., threshold, “dead space”)
involved, and (3) it is unified within the framework of statistical
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FIG. 10. The characteristic length (or effective thickness) for the first adsorbed
layer near the pore wall, Δz1, vs σaa/H at different wetting parameters for argon
adsorption in a realistic carbon slit pore at 87.3 K and a bulk pressure of 1 bar. The
lines are drawn to guide the eye.

mechanics. However, the applicability of the approach depends on
whether the unique coarse-grained pressure concept is valid in the
system of interest.

In addition to the in-layer tangential pressure that is spatially
averaged over a single layer, we can also define an in-pore tangential
pressure by spatially averaging the local tangential pressure over the
two convergent points that delimit the boundary of the nano-pore
within which all adsorbed layers are included [e.g., from zA to zC in
Fig. 8(b)]. Accordingly, a statistical pore width and a pore volume
that is conjugate to the in-pore tangential pressure can be deter-
mined. We collected the statistical pore widths for different wetting
parameters and compare them with other pore size definitions in
Fig. 11. Here, we consider three common choices for the pore size
definition: (1) The physical pore width, H, is the definition that we
adopt in this work to characterize our pore model [see Fig. 4(a)]. (2)
The effective pore width allows for the “dead space” near the wall,
which is inaccessible to the centers of the adsorbate molecules. This
“dead space,” zmin, can be estimated by setting the mean-field poten-
tial in Eq. (11) to 0,69 i.e., φ(zmin) = 0. We find zmin ≈ 2.89 Å for LJ
argon adsorbed on a graphite surface with Lorentz–Berthelot com-
bining rules applied, and the effective pore width is Heff = H − 2zmin.
(3) The internal pore width simply refers to the space between “hard-
sphere” wall carbon atoms, and it is given by Hin = H − σss. It is
clear from Fig. 11 that the statistical width is in good agreement
with the internal width and deviates from the physical and effective
widths. Our results support and rationalize the use of the inter-
nal pore width in modern molecular methods for characterizing
the pore size distribution.71–73 It should be noted that the internal
pore width is not equivalent to the statistical width but just a good
approximation to it. The internal width is purely geometric, while
the statistical width is related to the intermolecular interactions. It
has been argued that a modified internal pore width based on the
adsorbate–solid potential appears to be more satisfactory than the
geometric one in reproducing experimental adsorption isotherms.74

FIG. 11. Comparison of the statistical pore width that is consistent with the coarse-
grained in-pore tangential pressure with three common definitions for the pore
width. The statistical pore width is calculated for LJ argon in a realistic carbon slit
pore with three different wetting parameters, αw , at 87.3 K and a bulk pressure of
1 bar. See the main text for details.

It is apparent that the thermodynamic and transport properties of
confined fluids are sensitive to the pore width (especially for small
pores). This definition of the statistical width is expected to reduce
ambiguities and improve the consistency of the calculated properties
in nano-confinement.

C. Coarse-grained tangential pressure profile
in realistic carbon slit pores

Equipped with all appropriate length scales and integration
ranges, we can calculate the “unique” coarse-grained in-layer and in-
pore tangential pressure for different physical pore widths. These are
shown in Fig. 12 in comparison with the local tangential pressure by
two commonly used contour definitions. The local tangential pres-
sure profiles for all wetting parameters at a certain pore width are
qualitatively similar; thus, in what follows, we focus on the case of
αw ≈ 2.14. The pressure profiles for αw = 1 and αw = 5 are shown in
Appendix C for the reader’s reference.

Figure 12 shows that, again, different contour definitions for the
local pressure tensor lead to an ambiguous picture of the mechanical
state of the adsorbed phase inside the pore. Specifically, for pores of
H/σaa equal to 4 and 7, the IK profile shows a positive local pressure
for the first adsorbed layer, while the H definition predicts a nega-
tive local value. This seemingly contradictory picture has also been
observed in more complex systems, such as the polymeric thin films
confined between two repulsive walls75 and water inside a carbon
nanotube.51 With the help of the coarse-grained tangential pressure,
a “unique” pressure value for the first adsorbed layer can be revealed,
and it is negative (∼−200 bars) for H = 4σaa and H = 7σaa. For the
other pore widths examined, the in-layer tangential pressure for the
first adsorbed layer is positive. The sign of the in-layer tangential
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FIG. 12. Local tangential pressure profile (PT , read on the left-hand vertical scale) by the IK and H definitions in comparison with the coarse-grained tangential pressure
(PT

cg, read on the right-hand vertical scale) that appears to be unique for argon adsorption in realistic carbon slit pores of reduced physical pore widths H/σaa of 2, 3, 4, 7,
and 10, at 87.3 K and a bulk pressure of 1 bar. The systems are for a wetting parameter of αw ≈ 2.14. Note that for H = 2σaa, with only one adsorbed layer, the coarse-grained
in-layer and in-pore pressures are identical. The asymmetric in-layer profile is due to the fact that the simulated in-pore structure is not perfectly symmetric.

pressure can be explained by the competition between the com-
pression of the molecules inside the layer and the main attractive
force from the pore wall. If the adsorbed layer is not dense enough
and the repulsion between the molecules in the layer cannot com-
pensate for the attractive forces exerted by the pore wall and by
the neighboring layers, the tangential pressure inside the first layer
is negative (see also Fig. 14, for example). When we increase the
adsorbate–solid interactions (or, for small pores, when the poten-
tials from the two walls overlap), a more compact first adsorbed layer
will form. Since the repulsive force increases exponentially as two
adsorbate molecules approach each other,37 at some point, the com-
pression inside the first layer outweighs the attraction from the wall
and neighboring layers and the in-layer tangential pressure becomes
positive (see Fig. 15, for example). Because the middle layers are
less impacted by the attractive pore walls, the in-layer tangential
pressure is always positive in the middle layers but with a decay-
ing trend toward the pore center, where a bulk-like phase tends to
form in large pores. Except for the case of H = 4σaa, the overall
in-pore pressure in Fig. 12 shows an augmentation of about two
to three orders of magnitude over the bulk pressure (1 bar). This

provides solid evidence for pressure enhancement inside the pore
when the fluid strongly wets the surface, although the currently
reported enhancement is weaker than that based on the non-unique
local pressure.33 It is clear that this pressure enhancement is more
prominent for stronger adsorbate-solid interactions (see Fig. 15).
It is worth noting that the coarse-grained in-layer tangential pres-
sure here is different from the layer-by-layer representation of the
stress tensor by Sega et al.76 The latter relies on the H definition to
distribute the virials to each particle in the layers.

V. CONCLUSIONS
In their paper in 1950, Irving and Kirkwood2 remarked: “When

averaging (the local stress tensor) over a domain large compared with
the range of intermolecular force, these differences are washed out,
and the ambiguity remaining in the microscopic stress tensor is of neg-
ligible order.” In this work, we have presented a new method that
defines a coarse-grained pressure by integration of the local pres-
sure tensor using any valid contour definitions; the corresponding
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local pressure can be obtained by differentiating the integral curve.
This new method allows us, in principle, to explore the entire valid
contour space. The molecular simulation results have been pre-
sented for a LJ fluid confined in both structureless and realistic
carbon slit pores of various widths and wetting parameter values,
which allows for the determination of the integration of the local
tangential pressure using the new method and the conventional
method. We have shown that for LJ fluids near a solid wall, it
is possible to define such a “unique,” coarse-grained (or spatially
averaged) tangential pressure by averaging the local tangential pres-
sure over some well-defined range. Two length scales that corre-
spond to the coarse-grained tangential pressure for an adsorbed
layer (in-layer pressure) and for the entire pore (in-pore pressure)
can be regarded as the effective thickness of the adsorbed layer and
the statistical pore width, respectively. In particular, the effective
thickness of the first adsorbed layer near the wall is about one LJ
diameter, depending on the pore width and wetting parameter, and
compares favorably with other reported values. The statistical pore
width is smaller than the physical pore width but is well estimated
by the internal pore width, which is a common pore width defi-
nition used in the adsorption field. The calculated coarse-grained
tangential pressure profile inside the pore provides an unambigu-
ous mechanical picture of the adsorbed phase and results in a bet-
ter understanding of the pressure enhancement for strongly wetting
systems.

While the coarse-grained tangential pressure introduced here
should be applicable to a wide range of planar interface applications,
we note several likely restrictions. The chosen contour should be
physically sensible, i.e., it should not pass through the solid adsor-
bent. We have, therefore, proposed that the contour should be con-
fined to the z-space lying between the two molecules i and j and we
refer to such contours as “valid” contours, as Irving and Kirkwood
cautioned.2 Second, the adsorbate should sufficiently wet the solid
so that layering occurs. This is the case for the results presented
here (αw values of 1 and above). However, for very weakly wetting
systems, such as mercury on carbon (αw ∼ 0.1), we do not expect
layering. Third, the results presented here are for planar surfaces and
intermolecular forces of short range. Future studies will focus on the
possibility of defining a “unique” coarse-grained pressure tensor for
curved surfaces and longer-ranged forces, particularly for Coulomb
forces.

Finally, we note that the ability to define a microscopic, coarse-
grained pressure and the corresponding length scale unequivocally
may help to establish a thermodynamically consistent description
of highly inhomogeneous systems, and to bridge the gap between
experiment and theory in comparing microscopic properties. How-
ever, a more rigorous (mathematical) proof is desired in the future
to identify the true convergence points in the pressure integral curve
for any valid contour definitions, and further evidence is needed
to support the existence of this “unique” coarse-grained pressure
tensor.
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APPENDIX A: DERIVATION FOR THE LOCAL
TANGENTIAL PRESSURE BY THE IK-VR
AND H-VR DEFINITIONS

We start with the component Pxx in the pressure tensor.
Because the local tangential pressure only depends on the z-position
perpendicular to the planar interface, we perform an average over
the x- and y-direction first to integrate out unnecessary variables.
For the configurational (C) part of the local tangential pressure Pxx,
we have

PC
xx(z) =

1
S ∫

Lx

0
dx∫

Ly

0
dy[êx ⋅ PC ⋅ êx], (A1)

where S = LxLy and PC is the second-order pressure tensor given in
Eq. (3); êx is the unit vector in the x-direction. The integral limits, Lx
and Ly, represent the simulation box size in the x- and y-direction,
respectively, if the pressure tensor is sampled over the entire simu-
lation box. They can also represent the size in the x- and y-direction
for a specified averaging region (see Fig. 4) if the pressure tensor
is only sampled over that space. Substituting Eq. (3) into Eq. (A1)
gives

PC
xx(z) =

1
2S
⟨∑

i≠j
∫

Lx

0
dx∫

Ly

0
dy

êx ⋅ rij

rij
Fij

×∫
Cij

dl̃ ⋅ êx × δ(x − xl)δ(y − yl)δ(z − zl)⟩

= 1
2S
⟨∑

i≠j

xij

rij
Fij ∫

Cij

dl̃ ⋅ êx × δ(z − zl)⟩. (A2)

In the following derivations, we assume that the entire contour Cij
(or Cji) is inside the space where the pressure tensor will be sampled
(and this is the normal case if the sampling is performed over the
entire simulation box). We will also discuss the situation where only
part of the contour is inside the averaging region [see examples in
Fig. 4(b)] at the end of this Appendix.

For the IK-VR definition [see Fig. 1(c)], the contour vector l̃
starting from particle i can be expressed as

l̃ = ri + αriA + βrAj, (A3)

where {α, β} ranges from [0, 1]. The differentiation of the contour l̃
gives

dl̃ = riAdα + rAjdβ. (A4)

Substituting Eq. (A4) into Eq. (A2) leads to

PC
xx(z) =

1
2S
⟨∑

i≠j

xij
2

rij
Fij ∫

1

0
δ(z − zl)dβ⟩, (A5)

where zl = zA + βzAj. Applying the identities,
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∫
1

0
f (β)dβ = ∫

+∞

−∞

f (β)H(β)H(1 − β)dβ,

δ[ f (β)] =∑
k

1
∣f ′(βk)∣

δ(β − βk),
(A6)

where f
′

(β) = df /dβ and βk is a simple root of f (βk) = 0, Eq. (A5)
yields

PC
xx(z) =

1
2S
⟨∑

i≠j

xij
2

rij
Fij ∫

+∞

−∞

H(β)H(1 − β)δ(z − zl)dβ⟩

= 1
2S
⟨∑

i≠j

xij
2

rij
Fij ∫

+∞

−∞

H(β)H(1 − β) 1
∣zAj∣

δ(β − βk)dβ⟩

= 1
2S
⟨∑

i≠j

xij
2

rij
Fij

3
∣zij∣

H( z − zA

zij/3
)H( zj − z

zij/3
)⟩. (A7)

Similarly, for the configurational tangential pressure in the y-
direction, we have

PC
yy(z) =

1
2S
⟨∑

i≠j

yij
2

rij
Fij

3
∣zij∣

H( z − zA

zij/3
)H( zj − z

zij/3
)⟩. (A8)

Due to the symmetry of the system in the xy-plane (Pxx = Pyy), the
final expression for the local tangential pressure is averaged from Pxx
and Pyy to enhance statistics. By adding up the kinetic contribution
and writing the summation in a more efficient way (i.e., i < j), we
have

PT,IK−VR(z) = ρ(z)kBT − 1
4S
⟨∑

i<j

xij
2 + yij

2

rij

du(rij)
drij

3
∣zij∣

×[H( z − zA

zij/3
)H( zj − z

zij/3
)+ H( zA′ − z

zij/3
)H( z − zi

zij/3
)]⟩,

(A9)

where the scalar force, Fij, is replaced by −du(rij)/drij and
zA = (zi + 2zj)/3, zA′ = (zj + 2zi)/3.

For the H-VR definition [see Fig. 1(d)], we can write the
contour vector l̃ starting from particle i as

l̃ = ri + αriA + βrAB + γrBj

= ri + α(rA − ri) + β(rB − rA) + γ(rj − rB), (A10)

where {α, β, γ} ranges from [0, 1]. The differentiation of the contour
l̃ gives

dl̃ = riAdα + rABdβ + rBjdγ. (A11)

Substituting the differential of the integral contour [Eq. (A11)] into
Eq. (A2) and noting that riA ⋅ êx = rBj ⋅ êx = 0 lead to

PC
xx(z) =

1
2S
⟨∑

i≠j

xij

rij
Fij ∫

1

0
rAB ⋅ êx × δ(z − zm)dβ⟩

= 1
2S
⟨∑

i≠j

xij
2

rij
Fijδ(z − zi + zj

2
)⟩. (A12)

Similarly,

PC
yy(z) =

1
2S
⟨∑

i≠j

yij
2

rij
Fijδ(z − zi + zj

2
)⟩. (A13)

The final expression for the local tangential pressure by the H-VR
definition is

PT,H−VR(z) = ρ(z)kBT − 1
2S
⟨∑

i<j

xij
2 + yij

2

rij

du(rij)
drij

δ(z − zi + zj

2
)⟩.

(A14)

In the case where part of the integral contour is inside the aver-
aging region, then only that inside part of the contour should be
accounted for in the pressure calculation. Mathematically, for exam-
ple, the integration with respect to β in Eq. (A5) now should not be
carried out from 0 to 1 (entire range) but rather over a range repre-
senting the part of the contour vector l̃ that is inside the averaging
region.

APPENDIX B: MATHEMATICAL PROOF OF FUNCTION
f C [λij (z )] BEING SYMMETRIC ABOUT THE POINT
(λij = 0.5, f C = 1)

Considering the situation in Fig. 13, we have

2 − fC(1 − λij) = 2 − xiN + xiM

xij
= 2xij − (xiN + xiM)

xij
. (B1)

The symmetry of the arbitrary contour Cij and Cji leads to

xin + xiM = xim + xiN = xij. (B2)

Combining Eqs. (B1) and (B2), we have

2 − fC(1 − λij) =
2xij − (xiN + xiM)

xij
= xim + xin

xij
= fC(λij). (B3)
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FIG. 13. Illustration for the calculation of function f C(λij ) defined in Eq. (17) in the
case of zi ≤ zj . Points n and m are intersections of arbitrarily valid contours with
the plane corresponding to λij , and points N and M are intersections of contours
with the plane corresponding to (1 − λij ).

Therefore, we have proved that the function f C(λij) is symmet-
ric about the point (λij = 0.5, f C = 1).

APPENDIX C: COARSE-GRAINED TANGENTIAL
PRESSURE PROFILE FOR αw = 1 AND αw = 5

The local tangential pressure profile by the IK and H defini-
tions in comparison with the coarse-grained tangential pressure that
appears to be unique are presented in Fig. 14 and Fig. 15 for wetting
parameters of 1 and 5, respectively, for argon adsorption in realistic
carbon slit pores of reduced physical pore widths H/σaa of 2, 3, 4, 7,
and 10, at 87.3 K and a bulk pressure of 1 bar.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

FIG. 14. Local tangential pressure profile (PT , read on the left-hand vertical scale) by the IK and H definitions in comparison with the coarse-grained tangential pressure
(PT

cg, read on the right-hand vertical scale) that appears to be unique for argon adsorption in realistic carbon slit pores of reduced physical pore widths H/σaa of 2, 3, 4, 7
and 10, at 87.3 K and a bulk pressure of 1 bar. The systems are for a wetting parameter of αw = 1. The asymmetric in-layer profile is due to the fact that the simulated in-pore
structure is not perfectly symmetric.
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FIG. 15. Local tangential pressure profile (PT , read on the left-hand vertical scale) by the IK and H definitions in comparison with the coarse-grained tangential pressure
(PT

cg, read on the right-hand vertical scale) that appears to be unique for argon adsorption in realistic carbon slit pores of reduced physical pore widths H/σaa of 2, 3, 4, 7
and 10, at 87.3 K and a bulk pressure of 1 bar. The systems are for a wetting parameter of αw = 5. The asymmetric in-layer profile is due to the fact that the simulated in-pore
structure is not perfectly symmetric.
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