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ABSTRACT: A major obstacle for machine learning (ML) in chemical science is
the lack of physically informed feature representations that provide both accurate
prediction and easy interpretability of the ML model. In this work, we describe
adsorption systems using novel two-dimensional energy histogram (2D-EH)
features, which are obtained from the probe-adsorbent energies and energy
gradients at grid points located throughout the adsorbent. The 2D-EH features
encode both energetic and structural information of the material and lead to
highly accurate ML models (coefficient of determination R2 ∼ 0.94−0.99) for
predicting single-component adsorption capacity in metal−organic frameworks
(MOFs). We consider the adsorption of spherical molecules (Kr and Xe), linear
alkanes with a wide range of aspect ratios (ethane, propane, n-butane, and n-
hexane), and a branched alkane (2,2-dimethylbutane) over a wide range of
temperatures and pressures. The interpretable 2D-EH features enable the ML
model to learn the basic physics of adsorption in pores from the training data. We show that these MOF-data-trained ML models are
transferrable to different families of amorphous nanoporous materials. We also identify several adsorption systems where capillary
condensation occurs, and ML predictions are more challenging. Nevertheless, our 2D-EH features still outperform structural features
including those derived from persistent homology. The novel 2D-EH features may help accelerate the discovery and design of
advanced nanoporous materials using ML for gas storage and separation in the future.

1. INTRODUCTION
The ability of nanoporous materials to provide tailored pore
environments for specific molecules has made them strong
candidates for applications in energy storage, chemical
separations, sensing, and catalysis. Porous carbons such as
activated carbon and biochar have been used for decades, for
example to remove organic pollutants from water.1 More
recently, there has been extensive research on metal−organic
frameworks (MOFs),2 a class of porous crystalline materials
assembled from metal nodes and organic linkers, due to their
chemical and structural tunability. Many MOFs have extremely
high gravimetric surface area and pore volume, making them
attractive for many adsorption application. Porous polymers are
purely organic adsorbents that can also be tuned by selection of
the constituent monomers to adsorb desired molecules.3 They
combine the adsorption properties of other nanoporous
materials with the processability of polymeric materials.4

For applications of nanoporous materials such as gas storage
or separation, the adsorption uptake of molecules of interest at
relevant conditions (e.g., temperature and pressure) is the
primary property of interest. Efficient approaches to accurately
predict adsorption uptake for a wide range of adsorbate−
adsorbent systems across variable thermodynamic conditions
can accelerate the identification of promising materials from a

large number of real and hypothetical candidates.5−9 Monte
Carlo simulations in the grand canonical ensemble10 or Gibbs
ensemble11 are the standard method to predict adsorption phase
equilibria in porous materials. Monte Carlo simulations with a
suitable force field can accurately predict adsorption properties
but are time-consuming if thousands of materials need to be
screened. To overcome this challenge, many groups are
developing machine learning (ML) approaches, where a ML
model is trained on adsorption data from either simulations or
experiments and then is used to predict the adsorption capacity
for new candidates.12 Such methods may be many orders of
magnitude faster than “brute force” molecular simulations
(Section 3.6).

A critical factor for a reliable ML model is the engineering of
features (often called “descriptors”). A feature set is a machine
readable, fix-sized data representation of material characteristics.
Typical features to describe adsorbent materials or adsorbate−
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adsorbent systems can generally be divided into two categories:
(1) structural features that capture geometric information about
the pores and (2) chemical or energetic features that reflect
interatomic interactions between the adsorbent and some probe
adsorbate species. Common structural features include textural
properties,6,13−16 such as the geometric or helium void fraction,
adsorbent density, characteristic pore sizes, and surface area.
These simple features have been shown to work reasonably well
in certain cases, for example, in regression tasks to predict
hydrogen storage for pressure swing or pressure−temperature
swing use8,15 and methane storage at high pressure (e.g., 100
bar),13,17 and in classification tasks to recognize high-performing
MOFs for adsorbing CH4,

13 CO2,
14 and N2

14 at low pressures.
More advanced structural features have been developed,
including Voronoi holograms,18 a three-dimensional (3D)
histogram encoding of probe-accessible fragments of the
Voronoi network based on the Voronoi decomposition of a
material; a barcode or image representation of material’s
topology derived from the persistent homology;16,19,20 and
machine generated features using a convolutional neural
network from a 3D voxel21 or crystal graph22 representation of
the material. It was found that ML models using structural
features can be effective for materials with simple chemical
composition, such as porous carbons23 and all-silica zeolites.21

For MOFs, chemical information may be necessary for accurate
predictions. Common chemical or energetic features include the
number density or percentage of chemical elements or
moieties,24,25 chemical properties of atoms (e.g., metallic or
nonmetallic, electronegativity),24 physical properties related to
the functional groups of the MOF linkers,26 adsorption Henry’s
coefficient,27 number density of atom types (e.g., using the atom
typing from molecular mechanics force fields28), and more
recently, the string representation of a material’s chemical
building blocks.29,30

Using both structural and chemical features can enable a more
accurate prediction of adsorption,24−28,31 and incorporating
cross information between structural and chemical features can
further improve ML model accuracy. Fernandez et al.
introduced an atomic property weighted radial distribution
function (AP-RDF) as features to predict CH4, CO2, and N2

adsorption.32 The AP-RDF was designed to encode both
geometric and chemical information by introducing the
adsorbent atomic properties (e.g., electronegativity, polar-
izability, and van der Waals volume) to the regular RDF. The
AP-RDF descriptor improves the regression quality over
conventional textural properties, but the model performance
deteriorates at low pressure. Simon et al. proposed the Voronoi
energy as a feature, which is the average energy of a probe atom
at the accessible Voronoi nodes, the connection of which
represents the pore network of the material.6 The Voronoi
energy incorporates both geometrical and energetic information
on pores, but it compresses 3D information into a scalar, thus
losing spatial details. In addition, the descriptor is biased toward
the energy at the pore center, so the full energy landscape in the
pore is not captured. Similarly, Fanourgakis et al. proposed an
averaged Boltzmann factor for a certain probe atom as a
feature;33,34 instead of inserting a probe into Voronoi nodes,
they calculated the averaged Boltzmann factor by randomly
placing the probe over the entire space. By changing the size of
the probe atom, they prepared a set of features containing
nanopore structural information. Another approach is to create a
fingerprint based on adsorption data that implicitly encodes
both structural and chemical features but allows the ML model
to find the higher-order descriptors during the training.7

Recently, Bucior et al.35 proposed using a histogram of the
energy felt by a probe species at grid points in a structure as
features for ML. In this method, which we will refer to as 1D
energy histograms (1D-EH), the energy felt by a probe is first
calculated at all points on a regular 3D grid throughout the unit
cell. These energies encode both structural and energetic
information on the porous material. However, it is not
straightforward to use the spatially resolved 3D “energy grids”
as features, so Bucior et al. converted them to 1D energy
histograms, which loses the spatial information but eliminates
the need for cumbersome data augmentation.21 One attractive
property of the histogram representation is that it is invariant to
transformations of the unit cell (e.g., translation, rotation, and
replication). Li et al. demonstrated the application of these 1D-
EH features to the adsorption of short alkanes and Xe/Kr
mixtures.36 A similar approach has been explored by Yu et al. for

Table 1. Adsorption Systems Investigated in This Worka

Labelb System T/Tc P/P0 Total number of data pointsc Reference

Kr-1-273 Kr @ 1 bar,273 K 1.3 N/A 2000 36
Kr-10-273 Kr @ 10 bar,273 K 1.3 N/A 2000 36
Xe-1-273 Xe @ 1 bar,273 K 0.94 0.02 2000 36
Xe-10-273 Xe @ 10 bar,273 K 0.94 0.24 2000 36
Eth-4-298 Ethane @ 4 bar,298 K 0.98 0.08 2000 36
Eth-20-298 Ethane @ 20 bar,298 K 0.98 0.41 2000 36
Eth-40-298 Ethane @ 40 bar,298 K 0.98 0.82 2000 36
Pro-1-298 Propane @ 1 bar,298 K 0.81 0.08 2000 36
Pro-5-298 Propane @ 5 bar,298 K 0.81 0.41 2000 36
Pro-10-298 Propane @ 10 bar,298 K 0.81 0.83 2000 36
But-0.24-298 n-Butane@ 0.24 bar,298 K 0.70 0.07 2000 This work
But-1.2−298 n-Butane@ 1.2 bar,298 K 0.70 0.36 6000 This work
Hex-0.02-298 n-Hexane@ 0.02 bar,298 K 0.59 0.1 2000 This work
Hex-10-495 n-Hexane@ 10 bar,495.6 K 0.98 0.39 2000 This work
Hex-25-495 n-Hexane@ 25 bar,495.6 K 0.98 0.98 2000 This work
DMB-13-477 2,2-dimethylbutane @ 13 bar,477.1 K 0.98 0.5 2000 This work

aCritical temperatures, Tc, and saturation pressures, P0, are available in Table S1. All simulated adsorption data are available in the SI. bLabel has
the general format of “Adsorbate abbreviation-Pressure-Temperature”. cTotal number of data points for training and testing. For each new system
(Reference: “This work”), MOFs in the data set were selected randomly from the ToBaCCo database.
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predicting adsorption of diverse collections of molecules in
MOFs.37

In this work, we explore a way to retain some of the spatial
information that is lost in 1D-EH features by introducing a
second histogram dimension based on the energy gradient,
which we term the 2D energy histogram (2D-EH). We show
that ML models using these new 2D-EH features can accurately
predict single-component adsorption in MOFs for spherical
molecules, as well as linear and branched alkanes over a wide
range of temperatures and pressures. The capability of our ML
model to predict adsorption of alkanes may be useful for high-
throughput screening of materials for organic pollutant
removal,38 hydrocarbon storage,39 and separations.40−43 By
interpreting the 2D-EH features at the atomic level, we show
how collapsing the spatially resolved 3D energy and energy
gradient grids into a low-dimensional histogram representation
still retains some spatial information, which improves the
predictions compared to the 1D-EH method. Moreover, we test
the transferability of these ML models trained on MOF data to
unseen amorphous porous materials (APMs). Finally, we point
out a challenge for ML related to capillary condensation in
pores.

2. METHODS
2.1. Data Collection. 2.1.1. Metal−Organic Frameworks.

Thousands of MOFs have been synthesized in experiments to
date and even more have been generated in silico. The structural
and chemical diversity of MOFs yields adsorption data that are
ideal for training an ML model. In this work, we used MOFs
from the ToBaCCo 1.0 database.44 For each system, we chose a

certain number of MOFs randomly from this database for
training and testing. See Table 1. There is a total of 13511
MOFs45 of 41 different topologies in the ToBaCCo 1.0
database. (Originally, 13512 MOFs were reported,44 but one
of them contains no atoms. We excluded this null structure here
and in the latest MOFX-DB collection.45) The variety of
topologies in the ToBaCCo MOFs also leads to a wide
distribution in pore size, void fraction, and surface area.35 All
ToBaCCo MOF structures were downloaded from the MOFX-
DB Web site (https://mof.tech.northwestern.edu/, accessed
Nov. 15, 2020),45 and we refer to MOFs following the same
naming convention as in the MOFX-DB.

2.1.2. Molecular Simulation of Adsorption. We prepared 16
single-component adsorption systems listed in Table 1, with 10
of them taken from Li et al.36 as benchmark data. These systems
represent adsorption of nonpolar spherical, linear, and branched
molecules in the ToBaCCo MOFs over a wide range of
temperatures (below, near, and above the critical temperature)
and pressures (ranging from 2% to 98% of the saturated vapor
pressure for subcritical temperatures). The “ground-truth”
absolute adsorption uptake in each MOF was obtained from
grand canonical Monte Carlo (GCMC) simulations using the
RASPA2 package.46,47 Alkane molecules were represented as
united-atom models with potential parameters taken from the
TraPPE force field.48 Nonbonded interactions were modeled by
the standard 12-6 Lennard-Jones (LJ) potential. Instead of
keeping bond lengths fixed as in the original TraPPE force field,
we adopted the default molecular model in the RASPA2 package
which treats the chemical bond as a harmonic oscillator. LJ
models were used for Kr49 and Xe50 atoms. The LJ potential

Figure 1.Workflow to construct 2D energy histogram (2D-EH) features. First, the energy and energy gradient felt by a probe particle are evaluated at
all grid points in the MOF unit cell. Then, grid points are assigned to the appropriate pixels in a 2D histogram, and the pixel values are normalized with
respect to the total number of grid points. To construct a feature matrix for an ML task, the 2D energy histograms are flattened to row vectors and then
combined; i.e., each column in the feature matrix corresponds to a pixel in the 2D energy histogram.
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parameters for framework atoms were taken from the Universal
Force Field (UFF).51 All force field parameters and potential
forms are reported in Tables S2−S5 in the Supporting
Information (SI). Lorentz−Berthelot combining rules52,53

were applied to estimate the cross-interaction parameters for
unlike pairs. All nonbonded interactions were spherically
truncated at 12.8 Å for alkane adsorption. The simulation box
size was made large enough to ensure that the MOF supercell
lattice parameters a, b, and c were at least twice the cutoff radius.
The numbers of both initialization and production cycles were
set to 3 × 104. All Monte Carlo moves were attempted with equal
probability; these moves were translation, rotation, partial and
full reinsertion of the component, and swap moves using a
continuous fractional component algorithm.54 For reinsertion
and swap moves, the configurational bias algorithm was
implemented to enhance the sampling of configurations of
chain molecules.48 A sample simulation input file is provided in
Section S2. All adsorption data in this work are reported in
volumetric units [cm3(STP)/cm3 framework] because the 2D-
EH features only encode volumetric information on the
structure and no mass or density information is included.

In all GCMC simulations the MOF structure was assumed to
be rigid. Although this approach is common in high-throughput
calculations of adsorption, systematic studies have suggested
that full inclusion of MOF degrees of freedom in adsorption
calculations leads to non-negligible effects in a surprising
fraction of materials.55 This observation is a reminder that the
predictions of ML models are subject to the same limitations as
their training data and that using higher resolution methods that
test the impact of these limitations for materials of particular
interest is advisible.

2.1.3. Calculation of Textural Properties. All MOF
structures were characterized by conventional textural proper-
ties. The helium void fraction (VF) was estimated by the Widom
insertion method using RASPA2.49,56 Detailed simulation
parameters are listed in Table S6. The total volumetric surface
area (VSA, including surface area from both accessible and
inaccessible pore network), total gravimetric surface area
(GSA), pore limiting diameter (PLD), and largest cavity
diameter (LCD) were calculated by Zeo++ v0.3,57 where
framework atom radii were taken from UFF.51 A nitrogen probe
with radius of 1.86 Å58 was used to assess both the accessibility
of the network and the surface area. We used the “-ha” flag to
achieve high-accuracy calculations. All textural properties are
available in the SI.
2.2. Feature Engineering. The workflow to construct the

2D-EH features is summarized in Figure 1. We first discretized
the unit cell of each MOF structure into grid points that are
evenly spaced by 0.5 Å along each axial direction; if the edge
length cannot be divided by 0.5 evenly, we took the number of
grid points along that axial direction to be one (origin) plus the
largest integer that does not exceed the quotient. By placing a

spherical probe at each grid point i, we calculated the potential
energy i and the potential energy gradient as
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LJ Kr49 and Xe50 spheres were used as the probes for the
corresponding adsorption systems. For the adsorption of
alkanes, a united-atom model of a methyl group was adopted
as the probe because it is the most exposed pseudoatom that
interacts strongest with the adsorbent.36,59 LJ parameters of the
probes are available in Table S7. The probe-adsorbent energy
and energy gradient were evaluated at all grid points. Force
fields, the nonbonded interaction scheme, and the simulation
box size were consistent with those used in the GCMC
simulations of this work and of Li et al.36 When evaluating the
energy gradient in eq 2, the impulsive force was calculated to
account for the abrupt change of energy at the cutoff radius, thus
retaining the consistency with the energy calculations.60

Once ready, we binned the values at the grid points into a 2D
histogram in terms of energy and energy gradient (i.e., 2D
energy histogram). Each “pixel” in the 2D-EH was normalized
by the total number of grid points in the simulation box. The
range in each dimension of the 2D histogram was determined
based on the statistical significance (see an example in Table
S8).35 For simplicity, the histogram bin width (i.e., the
resolution of 2D histogram) was assumed to be dependent
only on the probe type, but independent of adsorbate type (i.e.,
not distinguishing between the different alkanes), adsorption
condition, and ML algorithm. We optimized the bin width for
three probe types (i.e., Kr, Xe, and methyl group) based on the
principle of bias-variance trade-off (see Section S3.3).61 As
shown in Section 3, after determining the resolution of the 2D-
EH only once for the methyl probe, the same 2D-EH is robust
and transferable to all alkanes in this study at different
adsorption conditions. Some grid points have energy and energy
gradient values lying outside the bound of the histogram. We

Table 2. Optimized Parameters of 2D-EHs for Different Probesa

Energy [kJ/mol] Energy gradient [kJ/mol/Å]

Probe Range Bin width Number of bins Range Bin width Number of bins Total number of features

Kr [−30, 0) 2 17 [0, 140) 70 3 51
Xe [−40, 0) 2 22 [0, 170) 42.5 5 110
CH3 [−24, 0) 2 14 [0, 112) 28 5 70

aA “very attractive” and a “non-negative-energy” bin were added in the energy dimension to account for energy values lying outside the lower and
upper bound, respectively; a “very repulsive” bin was also added in the energy gradient dimension to account for energy gradient values higher than
the upper bound.
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included a “very attractive” bin for all energy values smaller than
the lower bound in the energy dimension and a “non-negative-
energy” bin for all non-negative energy values (including 0). A
“very repulsive” bin was also included in the energy gradient
dimension to account for all grid points having energy gradient
values larger than the corresponding upper bound. With this
setup, the summation of all pixel values in the 2D-EH is
normalized to unity. Again, we note a prominent advantage of
the 2D-EH over the raw grid representation is that the histogram
representation is independent of how the unit cell is chosen for
the materials.

Optimized parameters of the 2D-EHs are summarized in
Table 2 for different probes. It was found that the bins in the
energy dimension are finer than those in the energy gradient
dimension because the energy appears in the Boltzmann factor
weighing the different microstates and appearing in the MC
acceptance rules. Eventually, the 2D histograms were flattened
into row vectors and stacked together to form a n × m feature
matrix, as illustrated in Figure 1, where n is the number of
adsorbents in the data set and m is the total number of pixels
(features) of the 2D-EH (see Table 2 for the value of m).
2.3. Machine Learning and Data Analysis. The

correlation function, y = F(X), between the 2D-EH feature
vector, X, and the corresponding adsorption capacity of the
material, y, was estimated using supervised ML algorithms. The
form of the correlation function is unknown a priori. As a starting
point, we tested least absolute shrinkage and selection operator
(LASSO) regression.62 The functional form of LASSO is a
multiple linear regression with an L1 regularization term
included in the loss function to reduce model overfitting.
Most importantly, LASSO automatically selects important
features by zeroing the weights of the least important features.
In cases where the correlation function is nonlinear, we tried a
Random Forest (RF) regression algorithm.63 The RF regression
falls into the category of ensemble learning. A RF model consists
of many independent regression trees (for a regression task),
and the results are averaged from all trees, thus reducing the
likelihood of overfitting the training data set. Gradient
boosting64 is another class of ensemble learning methods. Like
RF, gradient boosting also combines several weak learners into a
stronger learner. However, it differs from RF in the way that
gradient boosting trains tree predictors sequentially and each
iteration focuses on the residuals of the data.65 In particular, we
employed extreme gradient boosting (XGB),66 which is an
efficient implementation of the gradient boosting algorithm.
Finally, we tried a simple class of feed-forward artificial neural
networks, i.e., multilayer perceptron (MLP).65 Unlike RF and
XGB, an MLP with many hidden layers is able to learn features at
various levels of abstraction. We designed an MLP architecture
having four hidden layers with a dropout layer added after the
first hidden layer to prevent overfitting. ML model training and
testing were performed with multiple Python and R packages.
Details on the ML methods and hyperparameter tunning are
available in Section S4 in the SI. For all systems we used a 50/50
data split for training and testing purposes except for the case of
n-butane adsorption at 1.2 bar, 298 K, where more data points
are available, and an 80/20 data splitting was used. Code is
hosted at https://github.com/snurr-group/2D-energy-
histogram. Trained ML models and other necessary supporting
data are stored at 10.5281/zenodo.5481697.

To measure the predictive accuracy, the coefficient of
determination (R2), mean absolute error (MAE), mean absolute

percentage error (MAPE), and root-mean-square error (RMSE)
were calculated,
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where n is the total number of data points and y̅i is the mean of all
adsorption amounts from GCMC (yi). In practice, for a porous
material with small pores (LCD < 3 Å), GCMC simulation
predicted yi = 0 while ML models predicted a small but nonzero
value. This led to a problematic implementation of the
conventional MAPE definition where yi is in the denominator.
Here we adopted a slightly different MAPE definition, where the
predicted amount, ŷi, is present in the denominator.67 This
definition of MAPE tells us the expected percentage error given a
predicted value. This implementation of MAPE helps avoid the
singularity problem (i.e., division by zero) in our case.

3. RESULTS AND DISCUSSION
3.1. Benchmark of 2D Energy Histogram Features. We

first compared the performance of 2D-EH features against the
1D-EH features on the data set reported by Li et al.36 (see Table
1). Figure 2 shows parity plots comparing the GCMC data for Kr
adsorption at 1 bar, 273 K, with ML predicted values using 2D-
EH features. Even with most of the points concentrated at low
loading and a few points spreading out in the middle and high
loading range (>50 cm3

STP/cm3), both LASSO and RF models
can establish a good correlation using the 2D-EH features, with
LASSO performing slightly better (R2 = 0.99, compared to R2 =
0.97 for RF). We note that analogous ML models from Li et al.
using the 1D-EH features produced a lower level of correlation
on the same data set (with R2 ∼ 0.83−0.85).36 Although our ML
models achieve an overall good fitting quality, LASSO sacrifices
predictive capability at low loadings (<3 cm3

STP/cm3) by
systematically overestimating the adsorption capacity (inset of
Figure 2a). In contrast, the RF model improves the prediction
quality in the low-uptake regime (inset of Figure 2b) but at the
cost of marginally less predictive ability in the high loading range
(>75 cm3

STP/cm3), thus leading to a slightly higher RMSE value
(3.4 cm3

STP/cm3 compared to 2.1 cm3
STP/cm3 for LASSO). The

difference in fitting quality at low loading between LASSO and
RF models also explains a slightly higher MAPE value in the
LASSO case (i.e., MAPE = 8.4% for LASSO versus MAPE =
4.3% for RF), where systematic deviations at low loading have
larger impact on the MAPE metric. In practice, the RF model
appears suitable to cases where uptake is present in the
denominator of the objective metric, such as in the prediction of
selectivity, while the LASSO regression model is preferred when
predicting adsorption capacity larger than ∼3 cm3

STP/cm3.
Figure 3 summarizes the evaluation metrics of ML predictions

using 2D-EH features and those using 1D-EH features36 for Kr,
Xe, and alkanes up to C3. Comparing different ML models,
LASSO regression using 2D-EH features works better for
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spherical molecules with an average of 7% and 23% reduction in
MAE and RMSE compared to those of the RF models,
indicating an approximate linear correlation between the input
features and adsorption capacity. This linear behavior has been
observed before35,36 and is expected in view of the nature of
energy-histogram-based features. We discuss this further in
Section 3.3. Unlike spherical molecules, short-chain alkanes
expand over several grid points at a time, and nonlinear
correlation functions (such as the RF model) yield improved
performance, while LASSO regression can produce systematic
errors; for example, see the LASSO prediction using 2D-EH
features in the “Pro-5-298” case in Figure 3 and the
corresponding parity plots in Figure S12. Comparing different
features, when LASSO models were implemented for adsorption
of spherical molecules, replacing the 1D-EH features with our
2D-EH features reduces the MAE by more than 40% on average;
in the case of Kr adsorption at 1 bar and 273 K, this number is
about 70%. When RF models were applied for short-chain
alkanes, 2D-EH features reduce the MAE by 15% on average
compared to 1D-EH features. We note that Li et al. used 1 Å for
the grid size. We found that a finer grid size of 0.5 Å leads to a
4.6% decrease in MAE compared to a coarser grid size of 1 Å for
the “Eth-40-298” case using the RF model (Figure S20). We
thus used a grid size of 0.5 Å to prioritize the accuracy, with the
intention to test the applicability of our 2D-EH features to
different systems.

We also trained baseline RF models using conventional
textural properties as features (VF, VSA, GSA, LCD, PLD), and
corresponding ML performance metrics on the testing data are
summarized in Table S11. For all systems considered in Figure 3,
while RF models using 2D-EH features always maintain high
predictive accuracy with R2 > 0.94, baseline models show an
increase in performance from low pressure to high pressure with
R2 ranging from 0.81 to 0.97. The improvement of 2D-EH
features over textural features is especially significant for
adsorption of spherical molecules and for alkanes at low relative
pressure (P/P0 ∼ 0.1), with an average of 63% reduction in
MAE. For adsorption of alkanes at medium to high relative
pressure, the performances of baseline models and RF models
using 2D-EH features are comparable. The good predictive
accuracy of baseline models at these conditions can be
understood by incrementally stronger correlation between the
adsorption capacity and structural properties (e.g., VF, VSA,
GSA) as the loading increases.

The 2D-EH features are closely related to the Henry’s
constant of corresponding probes. We calculated the Henry’s
constant for Kr and Xe at 273 K using the Widom insertion
method. For alkane systems, the cost of calculating the energy
histogram for a single spherical probe species is significantly
lower than that for calculating the Henry’s constant for a
complex molecule such as n-hexane. Therefore, we calculated
the Henry’s constant of a single methyl probe at 298 K for a
consistent comparison with 2D-EH features. Testing metrics of
baseline RF models using both textural properties and Henry’s
constant as features are summarized in Table S12. As expected,
adding the Henry’s constant to the baseline feature set improves
the ML predictions for spherical molecules and for alkanes at
low relative pressure, where RF models using only textural
features fall short. Nevertheless, the 2D-EH features still lead to
better ML predictions under these conditions, and an average of
33% reduction in MAE can be achieved.

As implemented, all ML models using 2D-EH features predict
adsorption capacity in volumetric units, but the conversion to

Figure 2. Parity plots comparing GCMC results for Kr adsorption at 1
bar, 273 K, against ML prediction (on 1000 testing data) using 2D-EH
features and different ML models: (a) LASSO regression and (b) RF.
Inset is an enlarged view of the corresponding parity plot at low capacity
(<5 cm3

STP/cm3). Both LASSO and RF give good predictions, with
LASSO giving a better overall fitting quality and RF being particularly
good at low loadings. See Figure S4 for parity plots on the training data.

Figure 3. Benchmark comparison of ML prediction on the testing data
using 2D-EH features (this work) and 1D-EH features.36 In general,
2D-EH features lead to better predictions than the 1D-EH features for
both spherical and chain molecules. Corresponding parity plots for each
system are available in Figures S4−S13. See Table 1 for the meaning of
the system labels.
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gravimetric capacity is straightforward. We illustrate this
conversion with Kr adsorption data in Figure S21. The
converted gravimetric capacities have slightly worse R2

compared to the original volumetric data, but the MAPE
remains the same after conversion (see eq 5).
3.2. Adsorption of Alkanes in MOFs. Having demon-

strated the advantage of 2D-EH features over 1D-EH and typical
baseline features in simple systems, we implemented 2D-EH
features to predict the adsorption of larger linear and branched
alkanes. We employed four ML regression algorithms: LASSO,
RF, XGB, and MLP, and the comparison is summarized in
Figure 4. The LASSO regression leads to a lower predictive

accuracy than the nonlinear models for these alkane systems,
consistent with the findings reported in Section 3.1; in some
cases, LASSO results in a 3-fold increase in MAPE compared to
the RF predictions. By applying nonlinear ML models, i.e., RF,
XGB, and MLP, the adsorption predictions improve, with R2

ranging from 0.94 to 0.99. Among the three nonlinear models,
MLP provides the best prediction. High predictive accuracy on
the testing data (R2: 0.96−0.99) indicates that MLP with 2D-EH
features can accurately predict adsorption of both linear and
branched alkanes over a wide range of relative pressures and
temperatures. Figure 5 shows parity plots comparing GCMC
data and MLP predictions for three representative systems, i.e.,
propane, n-hexane, and 2,2-dimethylbutane adsorption at
different relative pressures. Similar performance in both training
and testing data sets suggests that the current MLP architecture
is robust. Even using RF with default hyperparameters in R, the
adsorption capacity can be predicted reasonably well for all
alkanes examined here, with R2 ranging from 0.94 to 0.97. XGB
regression shows results of intermediate quality between RF and
MLP (R2 of 0.95−0.98).

It should be noted that, given a MOF structure, the same 2D-
EH features based on the energy and energy gradient grids of a
simple methyl probe were used for all alkanes, including both
linear hexane and its branched isomer 2,2-dimethylbutane. This
convenience in preparation of features can be attributed to the
similar guest−host interactions for all alkane systems, where no
site-specific interaction (e.g., Coulombic interaction) was
considered in the simulation. Using these features, the ML
model implicitly learns how multisite molecules adsorb in these
complex pore environments�also learning the effects of
adsorbate−adsorbate interactions.

In comparison to baseline RF models using only textural
properties as features (Table S11), for alkanes larger than C3,
2D-EH features outperform textural features at low relative
pressure (P/P0 ∼ 0.1), with an average of 50% reduction in
MAE. This number decreases to 26% at a relative pressure of 0.5.
At high relative pressure near saturation (“Hex-25-495” case),
the performance of both types of features is similar. We also
trained baseline MLP models using textural features (Table
S11). We found that, unlike the case of 2D-EH features where
MLP models improve the predictive accuracy, MLP models with
textural features lead to similar (and in some cases almost
identical) performance compared to RF models. Similar to
observations in Section 3.1, adding the Henry’s constant of a
single methyl probe at 298 K to the textural feature set improves
the ML predictions at low relative pressure (Table S12). This
new feature set combining both Henry’s constant and textural
properties, however, still underperforms the 2D-EH features,
leading to a MAE that is on average 39% higher at low relative
pressure for alkanes larger than C3.

Although disguised by high R2 values of ML predictions based
on 2D-EH features, the MAPEs are unusually high for some
systems, e.g., But-0.24-298, But-1.2-298, and Hex-0.02-298. The
parity plots of these systems exhibit systematic outliers in the
middle and high adsorption capacity ranges (e.g., Figures S14−
S16). The systematic deviation in ML prediction is associated
with the presence of capillary condensation and hysteresis near
the investigated adsorption conditions. Capillary condensation
and hysteresis can be observed in mesopores at (deep)
subcritical temperatures as a first-order phase transition
proceeding from a low-density adsorbed phase to a high-density
adsorbed phase. For adsorption at higher temperatures close to
the critical temperature, such as for n-hexane adsorption at 495.6
K (T/Tc = 0.98), capillary condensation does not occur, and the
MAPEs and RMSEs are reduced. Further analysis of systems
displaying capillary condensation is provided in Section 3.5.
3.3. Interpretation of 2D-EH Features and ML Models.

One- and two-dimensional energy histograms lack the spatial
information provided in the 3D energy grid, and yet these lower
dimension histograms can serve as successful descriptors for
predicting adsorption. Figure 6a helps explain why this is so. It
can be seen that the 2D-EH representation essentially classifies
the grid points in the 3D structure in terms of well-defined
regions (or adsorption sites) roughly based on the distance to
the framework walls, and the volume fraction of a region
corresponds to the value of a 2D-EH feature (i.e., a pixel in the
2D energy histogram). For example, the 2D-EH feature X70
corresponds to the volume fraction of the space that overlaps
with the framework, and feature X14 corresponds to the volume
fraction of the “open space” where the probe cannot feel the
framework. The 1D-EH features work in a similar manner, but
they cannot distinguish grid points close to the framework from
those far away from the framework when the grid points have the

Figure 4. Bar plots for ML performance metrics on the testing data
using 2D-EH features. Both MAPE and RMSE are cut off at a value of
20 in the plots; some systems have MAPE and RMSE that exceed the
cutoff value (see full data in Table S13). The results show that nonlinear
ML models, such as RF, XGB, and MLP, are suitable for predicting
adsorption behavior of chain molecules using only the methyl group as a
probe. Corresponding parity plots for each system are available in
Figures S8−S19. See Table 1 for the meaning of the system labels.
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Figure 5. Example parity plots (training on the top and testing on the bottom) comparing GCMC results and MLP predictions using 2D-EH features
for adsorption of different alkanes: (a) propane at 1 bar, 298 K (P/P0 = 0.08); (b) n-hexane at 25 bar, 495.6 K (P/P0 = 0.98); and (c) 2,2-
dimethylbutane at 13 bar, 477.1 K (P/P0 = 0.5), where P0 is the saturation pressure of the adsorbate at the operational temperature reported in Table
S1.

Figure 6. Interpretation of 2D-EH features. (a) Left: 3D supercell of tobmof-1269 with grid points superimposed and colored based on different 2D-
EH pixels; the black parallelepiped is the unit cell of the super structure. Right: corresponding 2D energy histogram evaluated by a methyl probe. We
assign a notation Xi (i = 1, 2, ..., 70) to each 2D-EH feature variable (i.e., pixel). (b) Total volumetric surface area versus the summation of 2D-EH
feature values that represent the fraction of grid points in the unit cell that have energy ranging from −20 to −2 kJ/mol and energy gradient ranging
from 0 to 28 kJ/mol/Å. (c) Helium void fraction versus 1 − X70, where feature X70 represents the fraction of grid points in the unit cell that have energy
and energy gradient larger than 0 and 112 kJ/mol/Å, respectively. In both (b) and (c), the data points correspond to the 2000 MOF structures
examined for adsorption of n-hexane at 10 bar, 495.6 K. The Pearson correlation coefficient, ρ, is close to 1 in both cases, suggesting a strong linear
correlation between the conventional textural properties and the linear combination of 2D-EH features.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00798
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00798?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00798?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00798?fig=fig5&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00798/suppl_file/ct2c00798_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00798/suppl_file/ct2c00798_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00798?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00798?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00798?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00798?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00798?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00798?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


same energy. Compared to using the 3D grid representation of
the material directly (see ref 21 for example), the 2D-EH
facilitates the ML task by grouping voxels into a smaller number
of features in a physical way. Based on this reasonable space
decomposition, it is worth considering the relationship between
2D-EH features and conventional textural properties. Figure 6b
shows that there is roughly a linear correlation between the total
surface area and the summation of some 2D-EH features that
corresponds to the volume fraction of pore space near the solid
framework. The latter resembles the “binding fraction” proposed
by Bobbitt and coauthors, which was designed to quickly screen
a large number of MOFs for hydrogen storage.68Figure 6c shows
that the quantity 1 − X70 correlates with the helium void
fraction. The apparent linear correlation in both cases is
confirmed by a high Pearson correlation coefficient. We note
that the linear combination of 2D-EH features that can be
correlated with example textural properties is not unique due to
the correlation between 2D-EH features (see Figure S23). The
ability to encode structural information enables the 2D-EH
features to accurately predict adsorption at both low pressure
(where surface interactions dominate) and high pressure (where
the pore volume of material dominates). Results presented in
Figure 6 are based on energy and energy gradient grids evaluated
by a methyl group, but the demonstrated characteristics are
probe-independent (see Figure S24 for the Kr probe).

Interpreting 2D-EH features in the way illustrated in Figure 6a
also provides insight into the predictive capability of the LASSO

regression model for spherical molecules. Since a spherical
molecule represented by a single interaction site always falls into
a region that is represented by a 2D-EH feature, the coefficient of
LASSO regression directly implies whether that particular
region in the porous structure is favorable for adsorption. Figure
7a shows a heatmap of LASSO coefficients learned from Kr
adsorption data at 1 bar, 273 K. LASSO coefficients that are
positive indicate 2D-EH features that positively contribute to
the adsorption capacity. To visualize this idea at the atomic level,
we collected grid points that were classified to the 2D-EH
features that have a positive LASSO coefficient and mapped
them back to the 3D structure. Figure 7b shows these grid points
superimposed on the MOF structure for the example of tobmof-
1269. We also overlap a GCMC snapshot of Kr molecules onto
the structure. We can see that the “favorable” regions learned by
the LASSO model are consistent with the information conveyed
by the GCMC snapshot, which suggests that our ML model
learns some basic physics of adsorption from the data pattern.
Nevertheless, we should be cautious about overinterpreting the
LASSO coefficients. Our caution is based on two points:

(a) A larger LASSO coefficient may not necessarily indicate
that the corresponding feature is more important than the
others in the prediction. Normalizing (in the range of [0,
1], as in our case) or standardizing (with zero mean and
unit variance) the 2D-EH features will not affect the
model’s overall prediction but will alter the coefficients
significantly (Figure S25).

Figure 7. Interpretation of the LASSO model for Kr adsorption at 1 bar, 273 K. (a) 2D heatmap of LASSO coefficients. Pixels in this 2D heatmap have
one-to-one correspondence to pixels in the 2D energy histogram; see an example histogram in Figure S24 for a Kr probe. (b) Front and side views of
the GCMC snapshot in tobmof-1269, plotted with VMD software.70 Kr molecules are shown as cyan spheres. Grid points that favor adsorption (i.e.,
grid points contributing to the 2D-EH features that have positive LASSO coefficients) are overlaid on the structure as red shading.

Figure 8. Illustration of the importance of the energy gradient in prediction of alkane adsorption. (a) 3D structure of tobmof-4936 with grid points
associated with 2D-EH features X13 (blue) and X27 (red); see Figure 6a for their location in the 2D-EH. Both features fall into the same energy range
but have different energy gradient ranges. (b) 2D-EH feature X27 versus X13 for 2000 MOFs with points colored according to n-hexane adsorption
capacity at 10 bar, 495.6 K. Feature variable X27 is more efficient in splitting the data than X13 in tree-based ML algorithms, such as XGB and RF.
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(b) The 2D-EH features are not mutually independent.
Pearson correlation coefficients shown in Figure S23
confirm that some features are linearly correlated or
anticorrelated. This suggests that, for highly collinear
variables, the LASSO regression may randomly select one
of them (typically the first one enters the model) and
shrink the coefficients of the rest. In this sense, it is hard to
say one feature is more important than other correlated
features. This problem may be solved by preprocessing
2D-EH features with principle component analysis69 to
form a compact and independent feature set.

In contrast to spherical molecules, articulated molecules, such
as the alkanes examined here, do not reside in only one
represented region at a time but expand over multiple voxels in
3D space. To illustrate why the inclusion of the energy gradient
helps the ML prediction, such as in tree-based algorithms (e.g.,
XGB and RF), we picked 2D-EH feature X27 from Figure 6a,
which is identified as among the top in feature importance in
predicting n-hexane adsorption at 10 bar, 495.6 K (Figure S26).
For comparison, we also picked another feature X13. Both
features fall into the same energy range from −2 to 0 kJ/mol in
the 2D energy histogram, but feature X27 corresponds to grid
points having higher energy gradient (28 to 56 kJ/mol/Å) and
feature X13 corresponds to grid points having lower energy
gradient (0 to 28 kJ/mol/Å); see histogram in Figure 6a. In the
3D structure, grid points belonging to X27 are closer to the
framework than those belonging to X13, as shown in Figure 8a.
Intuitively, the grid points close to the framework should
contribute differently to adsorption than those having the same
energy but farther away from the framework. To confirm this,
Figure 8b shows the values of X27 versus X13 for 2000 MOF
structures in the “Hex-10-495” data set (Table 1). Mimicking
the way that tree-based methods split the data, if we draw a
vertical line (i.e., splitting data based on X13), we find mixed
high-loading and low-loading data on both sides of the line
(poor classification). While if we draw a horizontal line (i.e.,
splitting the data based on the feature X27), we find a better
classification of the data. This example shows that grid points
close to the framework may not have the same influence on the
ML prediction as those far away from the framework but
possessing the same energies, and our 2D-EH features are able to
distinguish these grid points.
3.4. Transferability to Amorphous Porous Materials.

We also tested the generalizability of our ML models using 2D-
EH features to amorphous porous materials (APMs). Compared

to the ToBaCCo MOFs used for ML training, APMs have much
smaller pore sizes (e.g., LCD < 20 Å, Figure S28) and more
complex pore morphologies due to their amorphous nature.
Therefore, APMs are a good set of materials for testing the
transferability of ML models to regions that are not emphasized
by the training data.

APMs considered were hyper-cross-linked polymers (HCPs),
polymers of intrinsic microporosity (PIMs), activated carbons
(AC), and kerogens. We collected united-atom models for 120
microporous polymer conformations (composed of unique
types of 9 HCPs and 15 PIMs) from previous work.71−73

Thyagarajan and Sholl74 built a database of rigid APMs, which
includes a collection of 68 and 16 published structures of
AC75−81 and kerogen,82 respectively. We excluded 19 large AC
structures from the collection that would make GCMC
simulations prohibitively slow (Figure S27). Calculation details
of the 2D-EH features for these structures are consistent with
those described in Section 2.2. GCMC simulations of
adsorption followed the same protocols as in Section 2.1.2.
Nonbonded LJ parameters for AC and kerogen were taken from
UFF,51,74 and nonbonded LJ parameters for polymers were
taken from the united-atom TraPPE force field.59 During the
simulation, we assumed that the structures of the amorphous
materials were rigid. We note that this assumption was used for
the purpose of evaluating ML predictions on APMs, and in
practice, adsorption-induced restructuring can significantly
affect predictions in organic microporous glasses.83,84 We
selected two representative adsorbate systems for testing: (1)
Kr at 1 bar, 273 K, and (2) n-hexane at 10 bar, 495.6 K. Both
systems are at a high relative temperature,T/Tc, close or above 1.
Thus, we can test the transferability of well-behaved ML models
without complications from the potential problem of capillary
condensation. All adsorption data in APMs are available in the
SI.

In the case of Kr adsorption at 1 bar, 273 K, we employed the
LASSO model for MOFs that is originally introduced in Section
3.1 to predict adsorption in unseen APMs. Figure 9a shows the
parity plot comparing GCMC data and LASSO predictions.
Good evaluation metrics (MAE = 3 cm3

STP/cm3) for the 185
testing data points highlight the robustness and transferability of
the LASSO model. Similarly, in Figure 9b, the MLP model that
is introduced in Section 3.2 shows good predictions in general
for all types of APMs for n-hexane adsorption at 10 bar, 495.6 K
(MAE = 3 cm3

STP/cm3 comparable to that tested on MOF
structures, i.e., MAEMOF ∼ 3 cm3

STP/cm3, see Figure S17). Our

Figure 9. Parity plots comparing GCMC results and ML predictions for adsorption in APMs. (a) Kr adsorption at 1 bar, 273 K. (b) n-Hexane
adsorption at 10 bar, 495.6 K. ML models used here are the same as those originally introduced in Sections 3.1 and 3.2 and were trained with MOF data
only.
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findings suggest that, despite being trained with ToBaCCo
MOFs that have generally large pores (Figure S28), ML models
using 2D-EH features show excellent transferability to different
classes of porous materials with smaller pores and more complex
pore morphologies.
3.5. Challenges in Predicting Adsorption with Capil-

lary Condensation. As pointed out in Section 3.2, the
occurrence of capillary condensation leads to systematic
deviations in our ML predictions. The poor ML performance
at deep subcritical temperatures is not limited to alkane
adsorption but also occurs for spherical molecules, such as
methane (modeled as a single LJ sphere) adsorbed at 112 K (T/
Tc ≈ 0.59 and P/P0 = 0.48, Figure S29). For many applications of
adsorption in gas storage and separation that occur at or above
the critical temperature of the gases of interest, one does not run
into this problem. For example, hydrogen storage is usually at or
above 77 K (Tc = 33.2 K), methane storage is at 298 K (Tc =
190.6 K), and CO2 capture is usually above 298 K (Tc = 304 K).
In this section, we try to answer the following questions: (1)
Why do 2D-EH features perform poorly at deep subcritical
temperatures? (2) How well do 2D-EH features handle capillary
condensation compared to structural features, such as those
derived from persistent homology?

To answer the first question, we applied a dimensionality
reduction method, specifically Uniform Manifold Approxima-
tion and Projection (UMAP),85 to learn the data topology in a
high-dimensional manifold and then project the high-dimen-
sional data onto a low-dimensional space. The UMAP method is
an unsupervised learning technique. Thus, it takes only the 2D-
EH features of each structure as the input but not the adsorption
data. Details on the UMAP calculations are provided in Section
S8.1. We favor the UMAP method over the t-distributed

Stochastic Neighbor Embedding (t-SNE) method86 mainly
because the UMAP uses the cross-entropy cost function, which
is arguably better than the Kullback−Leibler divergence of t-
SNE in preserving the global structure of the data; this allows us
to identify similar and different MOF structures based on the
2D-EH features. MOF structures with similar 2D-EH features
are clustered together in the UMAP space, while structures with
distinct 2D-EH features are separated from one another.

Figure 10a shows the UMAP embedding space of MOF
structures considered for propane adsorption at 1 bar, 298 K,
along with the adsorption data, which is shown by the colors of
the points. We can see that low-loading regions (blue) are well
separated from the high-loading region (red), and there are
smooth transitions between regions. This well behaved UMAP
space indicates that the 2D-EH features are sufficient to
distinguish between similar and different structures in terms of
adsorption capacity. This observance supports the good ML
regression of the data in Figure 5a. In contrast, for n-hexane
adsorption at 0.02 bar, 298 K, where systematic deviations are
present in the ML prediction, MOF structures with drastically
different loadings are clustered together in some parts of the
UMAP space, as shown in Figure 10b. This suggests a
nonuniqueness (one-to-many) problem in the regression. We
selected tobmof-4300 and tobmof-2744 to illustrate this
problem. Figure 10c shows that these two structures share
very similar (almost identical) 2D energy histograms. In the
adsorption isotherms shown in Figure 10d, tobmof-2744 shows
a sharp increase in the isotherm before the studied pressure 0.02
bar. This sharp increase corresponds to capillary condensation in
pores with 19.9 Å diameter (LCD) where the adsorbed phase
goes through a first-order phase transition from a low-density
state to a high-density state. In comparison, the abrupt filling in

Figure 10.UMAP analysis of the effectiveness of 2D-EH features and illustration of capillary condensation in MOFs. (a) MOF structures projected in a
2D UMAP space, with points colored according to the propane adsorption capacity at 1 bar, 298 K, and (b) n-hexane adsorption capacity at 0.02 bar,
298 K. (c) 2D energy histograms for two selected MOFs marked in (b); insets show the unit cells. (d) Adsorption (solid line) and desorption (dashed
line) isotherms of n-hexane at 298 K for selected MOFs, where capillary condensation and hysteresis occur near the studied pressure, 0.02 bar.
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tobmof-4300 (LCD = 15 Å) occurs at a higher pressure and the
uptake at 0.02 bar is low. We note that the relation between the
condensation pressure and pore diameter does not follow the
Kelvin equation.87,88 This might be attributed to the depend-
ence of capillary condensation on topology and pore
connectivity in MOFs. Given similar 2D-EH features for
tobmof-2744 and tobmof-4300, our ML model is unable to
distinguish them. To compensate the increase in cost function
due to different loadings in these two “similar” structures, the
trained ML model predicts an average of the two. This also
explains the underestimation in ML prediction at the high
loading range and overestimation at the low/middle range
(Figures S16 and S30). A further analysis confirms that the ML
prediction is difficult for MOFs that specifically have pores about
20 Å in diameter (Figure S30); this pore size roughly
corresponds to the occurrence of capillary condensation of n-
hexane at 0.02 bar, 298 K. Moreover, it is possible that a small
fraction of GCMC training data is unreliable. Preliminary results
indicate that the accurate determination of adsorption amount
near condensation pressure is challenging in MOFs using
standard GCMC simulations because the system can get stuck in
a metastable state.

We also compared the performance of the 2D-EH features
with other structural features when capillary condensation is
present. Persistent homology is an advanced algebraic method
for discerning topological features of data.16,89 We derived
persistent homology from alpha shape filtration,90 during which
the appearance and disappearance of loops and voids inside the
alpha shape were recorded. To vectorize the extracted
topological information for ML tasks, the persistence image
method was adopted.91 We prepared two types of persistent
images for each MOF structure. The first type records the loops
in the structure, which reflects the channel/window size and
surface texture (e.g., benzene ring). We shall refer to the
corresponding persistent image as 1D persistent homology (1D-
PH) features. The other type encodes the size of cavities (pores)
in the structure along with the size of the narrowest window that
is directly connected to the pore. We shall refer to the second
type as 2D persistent homology (2D-PH) features. Figure S31
shows an example of the 2D-PH for IRMOF-1. A detailed
explanation about the persistent homology and its calculation is
available in Section S8.2. For reference, we also included
conventional textural properties (TX) in the feature set, i.e., VF,
VSA, GSA, PLD, and LCD.

Table 3 summarizes the evaluation metrics of RF predictions
for n-hexane adsorption at 0.02 bar, 298 K, using different types
of features. Overall, the 2D-EH features outperform all structural
features and their combination when capillary condensation is

present, with an average of 53% and 44% reduction in MAE and
RMSE, respectively. Moreover, our 2D-EH features are more
efficient than persistent homology features, considering the
much smaller size of the 2D-EH features (70) compared to 1D-
PH (839) and 2D-PH features (624). It is interesting to note
that the RF model based on 1D-PH features has similar
performance to those based on 2D-PH features, TX features,
and combinations thereof. This indicates that, at low pressure
(P/P0 = 0.1), low-dimensional topological information on
channel/window size plays an important role in predicting the
adsorption of n-hexane. It should be noted that 1D-PH and 2D-
PH features share some overlapping information, such as
“bottleneck” window size. Another observation is that TX
features have similar (and even slightly better) performance than
the persistent homology features. Compared to structural
features that are derived from purely geometric information,16

the helium void fraction (VF) calculated in this work also
encodes some energetic information (see Section 2.1.3), which
is useful for predicting low-pressure loadings. Most importantly,
the RF regression model using the full feature set continues to
exhibit systematic errors in the prediction (Figure S32). This
does not indicate that structural information is not important for
predicting the onset of capillary condensation, but rather that
simply combining individual feature sets does not provide
critical cross-information between the structure and energy. For
a system with more training data as in the case of n-butane
adsorption at 298 K, 1.2 bar, we made similar observations (data
available in Table S14). These findings indicate that further
research on capillary condensation is needed to guide the design
of effective ML features for adsorption prediction.
3.6. Methods Benchmarking. The ML workflow for

materials screening and discovery is significantly more efficient
than brute-force GCMC simulations. The following computa-
tional time was estimated using a combination of Intel Xeon E5-
2650 v3 @ 2.30 GHz and E5-2680 v4 @ 2.40 GHz. To simulate
adsorption of simple molecules such as Xe, each GCMC
simulation took on average 2 CPU hours to finish. For more
complex molecules such as 2,2-dimethylbutane, a single GCMC
simulation took on average 25 CPU hours. One can imagine that
a screening task using brute force GCMC simulations can
become prohibitive as the cost per simulation increases with
increasing molecular complexity and when the number of
materials increases. For the examples in this work, molecular
simulations for 2,000 MOF structures required a total of 4,000
CPU hours for Xe and 50,000 CPU hours for 2,2-
dimethylbutane. In contrast, the ML workflow only required
about 58 CPU hours to compute the energy and energy gradient
grids for 2000 randomly chosen ToBaCCo MOF structures,
another 2−12 CPU hours to bin these grids into 2D energy
histograms depending on the histogram resolution, and less than
10 min to fit and run the regression analyses (RF model, for
example). Once the ML model is validated, the computational
cost of prediction for additional structures is trivial (less than a
second per material). Thus, to perform the task of screening
2,000 MOF structures, the ML approach (once trained) requires
only ∼70 CPU hours versus 4,000 to 50,000 CPU hours for
GCMC, a two to 3 orders of magnitude speedup. It is
noteworthy that because a single probe sphere (CH3 group)
was used for all alkanes in this work, the computational cost of
our ML approach can be further reduced by reusing the grid
information from the other alkanes.

Although GCMC simulations in this work were performed in
serial, the computational advantage of the ML workflow still

Table 3. RF Predictions for Adsorption for n-Hexane at 298
K, 0.02 bar, Using Different Sets of Featuresa

Feature set R2 MAE MAPE [%] RMSE

2D-EH 0.95 5.9 19.5 11.3
1D-PH 0.80 14.3 45.5 21.5
2D-PH 0.81 13.4 45.5 21.1
TX 0.83 11.5 42.4 20.1
1D-PH+ 2D-PH 0.83 12.9 44.0 20.1
1D-PH+ 2D-PH+ TX 0.85 11.6 42.2 18.7
2D-EH+ 1D-PH+ 2D-PH+ TX 0.95 5.7 18.6 11.1

aMetrics presented are for 1000 testing data points. MAE and RMSE
are in units of cm3

STP/cm3.
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holds in comparison to a parallel GCMC implementation based
on graphics processing unit (GPU). The publicly available,
GPU-based code, GOMC,92 is reported to accelerate a GCMC
simulation by a factor of 2−13, which is much less than the
several orders of magnitude speedup achieved by the ML
workflow. In addition, the efficiency of the parallel simulation
heavily relies on the implementation of the simulation algorithm
and the structure of the code. In some cases, the GOMC code
was found to be even slower than the serial RASPA code used in
this work, such as for CO2 adsorption in IRMOF-1 with only LJ
interactions.92

It is also useful to consider the computational cost of our ML
approach relative to other similar approaches. Achieving a higher
predictive accuracy with our 2D-EH features compared to 1D-
EH features35 required only a 11% increase in wall time to
calculate the additional energy gradient (Figure S22). Our
current code handles the energy and energy gradient
calculations separately, so additional efficiencies reducing the
extra time associated with the 2D-EH features would be
achieved by grouping common calculation tasks for obtaining
the energy and energy gradient.

4. CONCLUSIONS
In this work, we have proposed and tested 2D energy histograms
(2D-EH) as features for ML regression models to predict
adsorption in nanoporous materials. The 2D-EH is constructed
by first placing a probe particle (a spherical atom or a united-
atom methyl group for alkane molecules) at evenly spaced
points throughout the adsorbent to calculate the energy and
energy gradient at these grid points. These grid results are
binned together into a 2D histogram, which is further flattened
to be used as a material input representation for ML models. We
found that compared to the previous 1D-EH version where only
the energy is considered, including energy gradients into the
histogram features retains important information on the 3D
energy landscape of the adsorbent−adsorbate system and thus
improves the ML predictions of adsorption capacity.

We have demonstrated the effectiveness of 2D-EH features by
training multiple ML models to predict single-component
adsorption in MOFs. Here we considered spherical species (Kr
and Xe), linear alkanes with a wide range of aspect ratios
(ethane, propane, n-butane, and n-hexane), and a branched
alkane (2,2-dimethylbutane) over a wide range of temperatures
and pressures. We found using 2D-EH features with the LASSO
model significantly improves the predictive accuracy for
spherical molecules compared to that using 1D-EH features.
For adsorption of alkanes, nonlinear ML models employed in
this work (RF, XGB, and MLP) all show highly accurate
predictions with R2 ∼ 0.94−0.99. The advantage of 2D-EH
features over baseline features that consist of textural properties
(VF, VSA, GSA, LCD, PLD) and Henry’s constant has also been
demonstrated, with significant improvement found at low
pressure range.

Physically, each 2D-EH feature (or histogram pixel)
represents the volume fraction of a well-defined region in the
adsorbent, and the definition of regions is roughly based on the
distance to the adsorbent surface. This sensible way to
decompose the space allows a ML model to learn some basic
adsorption physics from the training data. In addition, we have
shown that it is possible to correlate a linear combination of 2D-
EH features to the textural properties of the material, such as
void fraction and surface area, again showing that 2D-EH
features encode both structural and energetic information on the

adsorption system. Our ML models have also been shown to be
generalizable and transferrable. ML models that were trained
with only MOF data show excellent predictive capabilities for
adsorption in unseen amorphous porous materials, including
hyper-cross-linked polymers, polymers of intrinsic micro-
porosity, activated carbons, and kerogens. Future work will
focus on extending 2D-EH features to polar molecules, such as
water and CO2, where Coulombic interactions and molecular
orientations play an essential role in the adsorption.

Finally, we identified a challenge for future ML studies in
adsorption systems, namely, making predictions for systems
displaying capillary condensation and hysteresis. The insuffi-
ciency of our 2D-EH features at deep subcritical temperature has
been elucidated in the low-dimensional UMAP space. Never-
theless, our 2D-EH features still perform better than structural
features such as those derived from persistent homology.
Further investigations on capillary condensation in MOFs are
needed to solve this challenge.
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