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We present a new equation of state for a two-dimensional Lennard-Jones (2D LJ-EOS) solid at
high densities, ρ∗2D ≥ 0.9. The new 2D LJ-EOS is of analytic form, consisting of a zero-temperature
contribution and vibrational contributions up to and including the second anharmonic term. A detailed
analysis of all contributing terms is performed. Comparisons between the 2D LJ-EOS and Monte Carlo
simulation results show that the 2D LJ-EOS is very accurate over a wide range of temperatures in the
high-density region. A criterion to find the temperature range over which the 2D LJ-EOS is applicable
at a certain density is derived. We also demonstrate an application of the equation of state to predict
an effective tangential pressure for the adsorbed contact layer near the wall in a slit-pore system.
Tangential pressures predicted by this “2D-route” are found to be in qualitative agreement with those
found by the more traditional virial route of Irving and Kirkwood. Published by AIP Publishing.
https://doi.org/10.1063/1.5029488

I. INTRODUCTION

Atomically thin two-dimensional (2D) systems are of
interest because of their unique property behavior, being deci-
sively different from that of three-dimensional systems. These
marked differences arise because of the greatly reduced phase
space available in 2D and the consequent reduction in the num-
ber of possible microstates, coordination number, entropy, and
shielding of the molecules (for a schematic classical interpre-
tation, see Fig. 1). Differences in thermodynamic behavior and
in the phase diagram for Lennard-Jones (LJ) molecules due to
the reduction from 3D to 2D have received much study.1–7

The gas-liquid coexistence region of the diagram is much
reduced, and the critical point occurs at a reduced tempera-
ture of T ∗c ∼ 0.5 for 2D,4 compared to T ∗c ∼ 1.3 for 3D,8,9

a result of the greatly diminished phase space in 2D. Here
T ∗c = kBTc/ε. Moreover, the melting transition in 2D systems
occurs by a different mechanism than that in 3D. According to
the Kosterlitz-Thouless-Nelson-Halperin-Young theory,10–13

the solid first undergoes a transition to a hexatic phase, hav-
ing quasi-long-range orientational, but short-range positional,
order, followed by a second transition to an isotropic fluid hav-
ing both short-range orientational and positional orders. This
metastable hexatic phase has been observed in the melting in
2D LJ systems.14 Large-scale Monte Carlo (MC) simulation
results were also reported to support the two-stage melting
scenario in 2D LJ systems where the solid to a hexatic fluid
(solid-hexatic) transition and a hexatic fluid to an isotropic
liquid (hexatic-liquid) transition are both continuous phase
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transitions.15 For hard disk systems, it was recently reported
that the hexatic-liquid transition is of first order.16,17 Two-
dimensional systems have also proved of interest as a model
for physical adsorption on planar solid substrates and in slit-
shaped pores. Thus, the gas-liquid coexistence curve for a
monolayer of LJ molecules on the planar graphite surface was
found to be very close to that for the strictly 2D LJ fluid.18

Two-dimensional solid crystals occupy an important place
in structural biology and medicine. Thus, some proteins readily
self-assemble to form two-dimensional crystals on supported
lipid bilayers, and 2D nucleation is one of the mechanisms
by which 3D crystals grow.19,20 Two-dimensional arrays also
play a prominent role in DNA nano-technology.21–23 Finally,
we note the recent and intense interest in two-dimensional solid
inorganic materials, starting with the preparation of graphene24

and now expanded to include nearly 1000 two-dimensional
materials that have either been synthesized or have been pre-
dicted to be possible.25–27 In these covalently bonded 2D
materials, the interest is primarily in their electronic, pho-
tonic, and magnetic properties, which reflect the increased
quantum effects due to the reduction in phase space for 2D
systems.

Several attempts have been made to develop a two-
dimensional equation of state (EOS) for the LJ fluid, in
part because the LJ fluid is a convenient reference fluid
for more complicated systems. Henderson28 developed an
equation of state for two-dimensional Lennard-Jones fluids
using the Barker-Henderson perturbation theory. An empir-
ical term accounting for the higher-order expansion terms
was added to the second-order theory, and the final semi-
empirical 2D equation of state agreed very well with the
simulation results. Reddy and O’Shea29 fitted the equation of
state for two-dimensional Lennard-Jones fluids to a modified
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FIG. 1. A thermodynamicist’s view of reduced dimen-
sionality. For illustrative purposes, we employ a 3D face-
centered cubic lattice. Reducing the number of dimen-
sions from 3D to 2D to 1D causes large decreases in the
available phase space, coordination number, number of
possible microstates, Ω (n is the number of microstates
per degree of freedom), entropy, S = kB lnΩ (kB is the
Boltzmann constant), and configurational energy (N is
the number of molecules; molecules only interact with
their nearest neighbors with a square-well potential hav-
ing a potential well depth of εsw). HereΩ and S are values
for a single energy level.

Benedict-Webb-Rubin (MBWR) equation. The 33 parameters
in the equation were fitted to the pressure and energy data from
the virial equation of state and to Monte Carlo simulations. The
resulting equation of state offers a uniformly high-quality fit
for pressure and energy for reduced temperatures and den-
sities in the range 0.45 ≤ T ∗ ≤ 5, 0.01 ≤ ρ∗2D ≤ 0.80
(T ∗ = kBT/ε, ρ∗2D = Nσ2/S, where kB is the Boltzmann con-
stant, N is the number of molecules, and S is the area; see Sec. II
for the definition of ε and σ); the accuracy of the equation
depends on the reliability of the critical constants. Freezing of
the 2D LJ fluid to solid usually occurs at densities in the range
0.75 < ρ∗2D < 0.9, the exact value depending on the temper-
ature.1,5 The equations of state for a two-dimensional elec-
trolyte30 and for two-dimensional hard spheres31–34 have also
been reported.

Recently, Srivastava et al.35 reported a molecular sim-
ulation study for a LJ adsorbate in a graphite slit pore, for
cases where the interaction of the adsorbate molecules with
the carbon walls is strong, corresponding to weak chemisorp-
tion. They showed that the adsorbed contact layer next to the
graphene surface behaves like a two-dimensional solid with
hexagonal close-packed structure and that the tangential pres-
sures were very high near the wall, >10 GPa (hundreds of
thousands of bar) and even higher in a few cases. Very high
tangential pressure in the contact layer has also been reported
in previous studies36,37 for weaker adsorbate-wall interactions,
in the range 1–6 GPa near the carbon walls; these adsorbed
layers were also quasi-two dimensional in their structure. In
these systems, the very strong attractive force field from the
carbon walls causes the adsorbate molecules to pack tightly
on the surface, and strong compression of these layers occurs
in the xy plane, parallel to the walls, leading to these high
tangential pressures. These quasi-2D adsorbed layers have
very high 2D densities and have been observed to be in the
range 0.9 ≤ ρ∗2D ≤ 1.27 for the weakly chemisorbing systems
studied by Srivastava et al.35 Thus the 2D density in such
adsorbed films can be up to 70% higher than the density
of the solid at the melting point, far beyond the densities

considered in the earlier equations of state. To the best of our
knowledge, there is no such two-dimensional equation of state
for the Lennard-Jones system specifically constructed for such
high-density systems (ρ∗2D ≥ 0.9).

In this work, we present a new theoretically based 2D
Lennard-Jones equation of state (2D LJ-EOS) for the hexago-
nal close-packed 2D crystal structure. The extension to other
packing structures is straightforward. Two-dimensional Monte
Carlo simulations are performed to verify the validity of our
2D LJ-EOS. We also demonstrate one of the applications
of this 2D LJ-EOS by using it to predict the effective tan-
gential pressure of the adsorbed layers in several slit-pore
systems.

II. TWO-DIMENSIONAL LENNARD-JONES
EQUATION OF STATE

In this section, we derive the two-dimensional Lennard-
Jones equation of state (2D LJ-EOS) for the hexagonal close-
packed crystal phase. The intermolecular interactions are
modeled as the 12-6 Lennard-Jones (LJ) potential,

u(r) = 4ε

[(
σ

r

)12
−

(
σ

r

)6
]
, (1)

where ε is the LJ energy parameter and σ is the LJ atomic
diameter. The 2D LJ-EOS expresses the 2D reduced pres-
sure, P∗2D = P2Dσ

2/ε, in terms of the reduced temperature,
T ∗ = kBT /ε, and 2D density, ρ∗2D = ρ2Dσ

2 = (N/S)σ2. The
2D pressure, P2D, is the force per unit length acting on a
line normal to the directions of the force and has units of
Newton/meter. It is related to the Helmholtz free energy, A,
by P2D = −(∂A/∂S)T ,N .

The 2D LJ equation of state derived in this section has a
rigorous theoretical basis and is composed of two parts: the
contribution from the behavior of the solid at 0 K, when the
molecules are at rest on their lattice sites, and the contribution
from the vibrations of the particles, which must be included
at finite temperatures. The contribution to the energy due to
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the vibrations is obtained using a Taylor expansion about the
zero-temperature state in powers of the displacement of the
molecules from their lattice sites, keeping contributions up to
the second anharmonic term.

A. Pressure at zero temperature

At zero temperature, we assume a perfect hexagonal pack-
ing of the molecules. This structure has the largest pack-
ing fraction, η = ρ2Dπr2

0/4 =
√

3π/6, among all possible
two-dimensional packing structures. Thus

ρ∗2D

(
r∗0

)2
= ρ2Dr2

0 =
2
√

3
⇒ r∗0 =

*
,

2
√

3ρ∗2D

+
-

1/2

, (2)

where r∗0 = r0/σ is the separation between particles in units
of σ. In this case, all particles are at their equilibrium posi-
tions, forming a perfect hexagonal two-dimensional crystal.
The position of the particle is given by vector r∗i,j in units of σ,

r∗i,j = r∗0



(
i +

1
2

j

)
ex +

√
3

2
jey


, (3)

where i and j are integers, representing the generalized coor-
dinates in the hexagonal structure. We assume that the inter-
molecular forces are pair-wise additive. The total specific
configurational energy is

U∗0 = lim
L,M→∞

2
(L + 1)(M + 1)

L,M∑
i,j=0,0

L,M∑
l,m=0,0
l,m,i,j



*.
,

1



r∗i,j − r∗l,m






+/
-

12

−
*.
,

1



r∗i,j − r∗l,m






+/
-

6 
, (4)

where U∗0 = U0/ε and coefficient 1/2 is included here to avoid
double counting. We notice that by using Eqs. (2) and (3),
Eq. (4) can be rewritten as

U∗0 = lim
L,M→∞

2
(L + 1)(M + 1)

×

L,M∑
i,j=0,0

L,M∑
l,m=0,0
l,m,i,j



1(
r∗0
√
αijlm

)12
−

1(
r∗0
√
αijlm

)6



= lim
L,M→∞

1
(L + 1)(M + 1)



27
32

(
ρ∗2D

)6
L,M∑

i,j=0,0

L,M∑
l,m=0,0
l,m,i,j

1

α6
ijlm

−
33/2

4

(
ρ∗2D

)3
L,M∑

i,j=0,0

L,M∑
l,m=0,0
l,m,i,j

1

α3
ijlm



, (5)

TABLE I. The temperature- and density-independent expressions for the κ i coefficients, where αijlm = [(i � l)2 + (i � l)(j � m) + (j � m)2] for κ1 and κ2.
Numerical values are available in Table II.

i κ i i κ i

1
81
16

lim
L,M→∞

1
(L + 1)(M + 1)

L,M∑
i,j=0,0

L,M∑
l,m=0,0
l,m,i,j

1

α6
ijlm

10 243
√

3 lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

14i4 + 28i3j + 12i2j2 − 2ij3 − j4(
i2 + j2 + ij

)7

2
35/2

4
lim
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1
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1
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3
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7
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)10
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TABLE II. Numerical values of the parameter κ i. Parameters required to
evaluate the new two-dimensional Lennard-Jones equation of state [Eq. (31)]
are marked in bold.

i κ i i κ i

1 30.424 683 010 328 2 10 10 154.249 752 770 6

2 24.847 539 283 054 7 11 0

3 631.661 435 732 493 12 0

4 247.231 027 231 675 13 26 795.252 184 019 0

5 631.661 435 732 493 14 3 384.749 917 590 16

6 247.231 027 231 675 15 0

7 0 16 0

8 0 17 80 385.756 552 057 2

9 80 385.756 552 057 2 18 10 154.249 752 770 6

where αijlm = [(i � l)2 + (i � l)(j � m) + (j � m)2]. From the
basic thermodynamic relations, we can get the pressure at zero
temperature by

P∗2D,T=0 =
(
ρ∗2D

)2
(
∂U∗0
∂ρ∗2D

)
. (6)

By substituting Eq. (5) into Eq. (6), we can obtain the zero-
temperature contribution to the 2D pressure as a function of
the system density,

P∗2D,T=0 = κ1

(
ρ∗2D

)7
− κ2

(
ρ∗2D

)4
, (7)

where κ1 and κ2 are constants and their expressions are
listed in Table I. The values of κ1 and κ2 can be obtained
from the numerical calculations and their values converge
very rapidly with increasing L and M. The numerical

values of κ1 and κ2 are summarized in Table II to high
accuracy.

B. Pressure at finite temperature

To account for the effect of vibrations at non-zero temper-
atures, we expand about the zero-temperature result in powers
of the displacement of the molecules from their equilibrium
lattice sites. Thus, for each term in this expansion, a given
LJ molecule vibrates under the potential generated by all the
others at their average (equilibrium) positions. We can thus
calculate the vibration energy as a sum of such oscillators.
For the Lennard-Jones particles, the background mean-field
energy is

U∗
(
r∗

)
= 4 lim

L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0



1



r∗ − r∗i,j





12
−

1



r∗ − r∗i,j





6


,

(8)

where r∗ is the reduced position of the central particle and
r∗i,j is the equilibrium lattice position of other particles. Let
function f i ,j be

fi,j =
1




r∗ − r∗i,j





12
−

1



r∗ − r∗i,j





6

. (9)

For temperatures that are not too high, the displacement of the
particles from their lattice sites will be small, and the contribu-
tion from vibrations can be described using a simple harmonic
oscillator term (the first non-vanishing term in the expansion).
To get the harmonic force constant for the central particle, we
need to calculate the 2nd-order gradient of the background
potential field, i.e., the Hessian matrix,

H = ∇r∗∇r∗U
∗ (r∗) = 4 lim

L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0
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16
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×
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)2 (
x∗ − x∗i,j

) (
y∗ − y∗i,j
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) (
y∗ − y∗i,j
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)2



+ 24 lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0


−2

1
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14

+
1
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8


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1 0

0 1
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, (10)

where x∗ and y∗ are the reduced Cartesian coordinates of the central particle. From Eqs. (2) and (3), we can easily relate r∗i,j (i.e.,
x∗i,j and y∗i,j) to the density ρ∗2D through

x∗i,j =
*
,

2
√

3ρ∗2D

+
-

1/2 (
i +

j
2

)
, y∗i,j =

*
,

√
3

2ρ∗2D

+
-

1/2

j. (11)

If we evaluate the Hessian matrix at r∗ = 0 and rewrite x∗i,j and y∗i,j in terms of the density, then Eq. (10) becomes
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H0 = 96 lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0
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where
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+ 24
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+
1
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8


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

= 96 lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0
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7

81
(
ρ∗2D

)8

256
(
i2 + ij + j2)8

−
35/2

(
ρ∗2D

)5

16
(
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
*
,

2
√

3ρ∗2D

+
-

(
i +

j
2

)2

+ 24 lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0


−

37/2
(
ρ∗2D

)7

64
(
i2 + ij + j2)7

+
9
(
ρ∗2D

)4

16
(
i2 + ij + j2)4



= κ3

(
ρ∗2D

)7
− κ4

(
ρ∗2D

)4
(13)

and similarly

β = κ5

(
ρ∗2D

)7
− κ6

(
ρ∗2D

)4
, (14)

γ = κ7

(
ρ∗2D

)7
− κ8

(
ρ∗2D

)4
, (15)

where the expressions for κi (i = 3, 4, . . ., 8) are summarized
in Table I. The numerical values of those coefficients are listed
in Table II. We found that α ≈ β and γ ≈ 0 (see Appendix A).
Therefore, the Hessian matrix evaluated at r∗ = 0 in Eq. (12)
can be simplified to

H0 = α*
,

1 0

0 1
+
-
. (16)

The harmonic force constants are the eigenvalues of the
Hessian matrix. Hence, the reduced harmonic energy U∗har of
the central particle in terms of the polar coordinates can then
be written as

U∗har =
α

2
(
r∗

)2, (17)

where U∗har = Uhar/ε and the radial coordinate r∗ represents
the distance of the central particle from its lattice site (r∗ = 0)
in units of σ. So, the partition function of a single harmonic
oscillator is

qhar =
1

Λ2

∫
R2

exp

(
−

U∗har

T ∗

)
d2r

=
1

Λ2

2π∫
0

dθ

∞∫
0

exp

[
−
α(r∗)2

2T ∗

]
r∗dr∗

=
2πT ∗

Λ2α
, (18)

where Λ = (h2/2πmkBT )1/2 is the de Broglie wavelength and
the integration is over the whole 2D phase space. Conse-
quently, the total harmonic partition function of the system
is

Qhar = qN
har . (19)

Once the total partition function is known, other thermody-
namic properties can be readily obtained. From Eqs. (13),
(18), and (19), the 2D pressure contributed from the har-
monic vibrations of all particles in the system can be calculated
as

P∗har = −T ∗
(
ρ∗2D

)2*
,

∂ ln Q1/N
har

∂ρ∗2D

+
-T

=
T ∗

(
ρ∗2D

)2

α

(
∂α

∂ρ∗2D

)
T

=
7κ3

(
ρ∗2D

)4
− 4κ4ρ

∗
2D

κ3

(
ρ∗2D

)3
− κ4

T ∗. (20)

Combining Eqs. (7) and (20), an approximate, but simple,
equation of state can be obtained for the harmonic crystal,
where terms higher than quadratic ones are negligible at low
enough temperatures.38 At higher temperatures, our Monte
Carlo simulations indicate that only including this harmonic
contribution to the pressure is insufficient for an accurate
description of the 2D system (see Fig. 2 and further discussions
in Sec. III B). To extend our treatment to higher temperatures,
we need to include one or more higher-order anharmonic terms
in the expansion.

To evaluate the first anharmonic term, the third order gra-
dient of the background mean-field potential is needed, which
is a 3rd order tensor I. We note that if the central particle is
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FIG. 2. Decompositions of the 2D LJ-EOS into zero-
temperature contribution (gray column), harmonic con-
tribution (green column), and anharmonic contribution
(blue column) in a pressure-temperature (P-T) diagram
at different densities. (a) ρ∗2D = 0.9. (b) ρ∗2D = 1.1.
(c) ρ∗2D = 1.7. The total 2D pressures predicted by the
2D LJ-EOS (red bar) are compared with exact 2D MC
simulation results (open circle). Systems where a defec-
tive crystal/liquid is simulated are marked by red arrows.
Lines are drawn to guide the eye.

evaluated at the reference position, r∗ = 0, this 3rd order tensor
I0 will be zero due to the symmetry of the hexagonal structure,
hence leading to a trivial anharmonic term (see Appendix B).

Therefore, we calculate the second anharmonic term, for
which we need the 4th order gradient tensor G, evaluated at
r∗ = 0,

G0 = ∇r∗∇r∗∇r∗∇r∗U
∗ (r∗ = 0

)

= 4 lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0
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a b b c

b c c d

b c c d

c d d e



, (21)

where G0 is written as a (4 × 4) matrix, but actually it is a
4th-order tensor (2 × 2 × 2 × 2). By doing some mathemati-
cal manipulations similar to Eq. (12), each component in this
(4 × 4) matrix can be written in terms of the system
density,

a = κ9

(
ρ∗2D

)8
− κ10

(
ρ∗2D

)5
, (22)

b = κ11

(
ρ∗2D

)8
− κ12

(
ρ∗2D

)5
, (23)

c = κ13

(
ρ∗2D

)8
− κ14

(
ρ∗2D

)5
, (24)
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d = κ15

(
ρ∗2D

)8
− κ16

(
ρ∗2D

)5
, (25)

e = κ17

(
ρ∗2D

)8
− κ18

(
ρ∗2D

)5
. (26)

The analytical expressions for κi (i = 9, 10, . . ., 18) are given in
Table I. The numerical values of κi are listed in Table II. Sim-
ilarly, we found that a = e ≈ 3c and b = �d ≈ 0. By using these
relations, the total reduced vibrational energy U∗

vib, including
both harmonic and anharmonic contributions, can be written
in polar coordinates as

U∗vib =
c
8

[(
x∗

)2 +
(
y∗

)2
]2

+
α

2

[(
x∗

)2 +
(
y∗

)2
]

=
c
8
(
r∗

)4 +
α

2
(
r∗

)2. (27)

The corresponding vibrational partition function of a single
oscillator is

qvib =
1

Λ2

∫
R2

exp

(
−

U∗vib

T ∗

)
d2r

=
exp

[
α2/(2cT ∗)

]

Λ2

2π∫
0

dθ

+∞∫
0

exp


−

c
8T ∗

[(
r∗

)2 +
2α
c

]2


r∗dr∗

=

√
2π3T ∗

Λ4c
exp

(
α2

2cT ∗

)
erfc

(
α

√
2cT ∗

)
. (28)

Therefore, the total vibrational partition function of the system
is given by

Qvib = qN
vib. (29)

The vibrational contribution to the 2D pressure can be derived
from the total vibrational partition function, Eq. (29); by using
Eqs. (13), (24), (28), and (29), we get

P∗2D,vib = −T ∗
(
ρ∗2D

)2*
,

∂ ln Q1/N
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×
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)3
− κ4
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(
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)]} . (30)

Equation (30) is a non-linear function in terms of the temper-
ature. Combining Eqs. (7) and (30), an expression to calculate
the total 2D pressure can be obtained as a sum of the zero-
temperature contribution and that from the particle vibrations,
including both harmonic and anharmonic vibrational terms,

P∗2D = P∗2D,T=0 + P∗2D,vib. (31)

The parameters needed to evaluate Eq. (31) are marked in bold
in Table II. The pressure calculated by Eq. (31) includes both
kinetic and configurational contributions. From Eqs. (5) and
(29), we can also readily derive the Helmholtz free energy of
the 2D system, which is given by

A∗ = A∗0 + A∗vib

= NU∗0 − T ∗ ln Qvib, (32)

where A∗ = A/ε and subscript “0” and “vib” denote the
zero-temperature contribution and vibrational contribution,
respectively.

III. VERIFICATION OF THE NEW 2D LJ-EOS
A. Simulation details

Two-dimensional canonical Monte Carlo (2D MC) sim-
ulations of Lennard-Jones particles were performed to verify
the validity of the new 2D LJ-EOS derived in Sec. II. The
number of particles (N), area (S = LxLy), and temperature (T )
were fixed in the simulation. The box lengths were chosen
to allow the system to form a hexagonal structure. Periodic
boundary conditions were applied in the x and y directions. At
least 200 spherical Lennard-Jones argon particles were used in
each simulation, with potential parameters of σ = 3.405 Å and
ε/kB = 119.8 K. The cut-off radius for the 12-6 Lennard-
Jones potential was rc = 5σ, and a tail correction to the
configurational energy was added,

Utail =
4πεN2

S



σ2

10

(
σ

rc

)10

−
σ2

4

(
σ

rc

)4
. (33)
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The 2D pressure of the system was calculated by the area
perturbation method using the central finite-difference approx-
imation,39

βP2D =
1

2|ξ |S
ln

〈
(1 + ξ)N exp

(
−β∆U+)〉〈

(1 − |ξ |)N exp(−β∆U−)
〉 , (34)

where β = (kBT )�1; the relative change in the area is denoted
by ξ ≡ ∆S/S, the value of which has been discussed in Ref. 39.
The energy change ∆U+ = U(S + ∆S) � U(S) is associated
with the increase in area, and ∆U� = U(S � |∆S|) � U(S)
is the energy change associated with the decrease in area.
The angular bracket denotes the ensemble average. We note
that at these high densities it is very easy for the system to
become trapped in a local minimum, and it will take a very
long time for the system to escape from that local minimum
and reach the global minimum. This issue can be avoided by
the use of a perfect hexagonal structure as the initial con-
figuration. The equilibrium stage of the simulation consisted
of 10 × 106 configurations, and the statistics were sampled
from the following production stage, consisting of a further
10 × 106 configurations. We divided the production stage into
10 blocks, and the standard deviations of these 10 blocks were
computed.

B. Results and discussion

In derivation of the vibrational contribution to the 2D pres-
sure in Sec. II B, we made a mean-field approximation that the
central particle vibrates under the potential generated by all
the others at their equilibrium lattice positions so that the total
vibrational energy is a sum of such independent oscillators.
That approximation enables us to reduce a many-body prob-
lem to a simple one-body problem, but neglects the collective
vibrations that occur in the real solid. To better understand the
validity of this mean-field approximation in the derivation of
the 2D LJ-EOS, we decomposed the total 2D pressure into each
contributing component, i.e., zero-temperature contribution,
harmonic contribution, and anharmonic contribution; we show
these contributions in Fig. 2. Low density (ρ∗2D = 0.9), inter-
mediate density (ρ∗2D = 1.1), and ultrahigh density (ρ∗2D = 1.7)
systems are all considered. For the low-density system, in
Fig. 2(a), we can see that both the zero-temperature and
anharmonic terms are negative. Since the zero-temperature
term [Eq. (7)] is only a function of density, its value remains
constant with temperature. For the harmonic term, because
the increase of temperature enhances the vibrational kinetic
energy of the lattice sites, its value linearly increases with
the temperature [see Eq. (20)]. The total 2D pressures pre-
dicted by the 2D LJ-EOS are also compared with the exact 2D
MC results in Fig. 2. In addition to the zero-temperature and
harmonic contributions, we can see that the quantitative agree-
ment between the theoretical and simulation results would not
be reached without including the negative anharmonic term.
The anharmonic contributions become more and more impor-
tant with increasing temperature and are comparable to the
zero-temperature contributions in the case of ρ∗2D = 0.9. If we
further look at the intermediate-density case (ρ∗2D = 1.1) and

ultrahigh-density case (ρ∗2D = 1.7) in Figs. 2(b) and 2(c),
the systems are much denser, and the zero-temperature term
becomes positive. In these two cases, at low temperatures,
the zero-temperature term is the largest contribution to the
total pressure and possible errors in the vibrational term are
negligible. Again, as the temperature goes up, the harmonic
term contributes more to the pressure and the inclusion of
the negative anharmonic term ensures the quantitative agree-
ment between the 2D LJ-EOS the 2D MC results. However,
the anharmonic term becomes less important compared to
the other two contributing terms when the system density
increases. We note that at high enough temperatures (marked
by red arrows in Fig. 2), the theoretical results by the 2D
LJ-EOS start deviating from the exact 2D MC results. For
those state points, we observed either a defective crystal or
liquid phase in the 2D MC simulations. We note that the 2D
LJ-EOS presented here shows excellent agreement with the
MC results over the recommended range of densities and tem-
peratures for which the EOS is expected to hold, as seen in
Figs. 2–5. The EOS neglects anharmonic terms higher than
the second and also neglects collective lattice vibrations. Con-
tributions from higher anharmonic terms appear to be negli-
gible, provided that the upper temperature limits prescribed
below [see Eq. (36)] are respected. It follows from this and
the good agreement with the MC results that the contribu-
tions from collective vibrations will also be very small in the
range of densities and temperatures for which the EOS is con-
structed. Including the latter effects in our EOS would result
in considerable additional complexity, with minimal benefit in
accuracy.

The isotherms for argon calculated from 2D MC and the
2D LJ-EOS are compared in the P∗2D - ρ∗2D diagram shown
in Fig. 3. The relative deviations of the pressure between the
two methods are also plotted in Fig. 4. From Figs. 3 and 4,
we can see that large fluctuations in the deviation occur in
the low-density region, while in the high-density region, there
is almost zero deviation between the two methods. This is
because there is more free space in the low-density system

FIG. 3. Isotherms for the pressure-density diagram for the two-dimensional
LJ system at high density from 2D MC (symbols) and 2D LJ-EOS (solid
lines) at reduced temperature of 0.73 (87.3 K), 1.67 (200 K), 2.50 (300 K),
4.17 (500 K), and 5.84 (700 K). Real units are for LJ argon (withσ = 3.405 Å
and ε/kB = 119.8 K). Error bars (standard deviation) are always smaller than
the size of the symbol.
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FIG. 4. The relative deviation plot for pressure at different temperatures,
where P∗MC is the 2D MC simulation result and P∗EOS is the 2D LJ-EOS
calculation, both of which are taken from Fig. 3. Points corresponding to fluid
phase (orange region) or solid phase (blue region) are marked in the plot. See
text for details.

than in the high-density system. With increasing temperature,
particles with random thermal motion about their equilibrium
positions1 move more freely in the low-density system than
those in the high-density system. Thus, the hexagonal struc-
ture at low density is more easily disrupted. In Fig. 4, we
have marked the points where the fluid phase or solid phase
is simulated. Due to the small simulation system used in this
work, we cannot distinguish between the liquid phase and any
hexatic phase that could be present. Thus, some state points
marked in the fluid phase in Fig. 4 could possibly be in the
metastable hexatic phase. We can expect that, because of the
limited thermal motion of atoms in the high-density region,
once the crystal is formed at a given temperature, our 2D
LJ-EOS will remain accurate at even higher density, beyond
the highest reduced density shown in the plot. An extended
pressure-temperature (P-T) diagram at different densities is
shown in Fig. 5. We can see that for each fixed-density curve,
when temperature is higher than an upper limiting value, which
is defined as T lim, our 2D LJ-EOS results start deviating from
the exact 2D MC results. A typical configuration for the 2D
LJ argon system at a high temperature above T lim is shown in
Fig. 6(a); according to the phase diagram of the 2D Lennard-
Jones fluid,1 the system is not in the solid phase at this state
condition, and the hexagonal lattice assumption made in the
2D LJ-EOS is no longer valid. However, when we decrease

FIG. 5. Pressure-temperature (P-T) diagram for the two-dimensional LJ sys-
tem at fixed densities from 2D MC (symbols) and 2D LJ-EOS (solid lines).
Real units are for LJ argon (with σ = 3.405 Å and ε/kB = 119.8 K).
Error bars (standard deviation) are always smaller than the size of the
symbol.

the temperature, the system re-enters the solid phase, and the
hexagonal crystal is the most thermodynamically stable struc-
ture [Fig. 6(b)]. The simulation results and 2D LJ-EOS calcu-
lations are in good agreement again with almost zero relative
deviation.

In Fig. 5, we have defined an upper temperature limit,
T lim, above which the 2D LJ-EOS calculations start deviating
significantly from the 2D MC results. From a molecular per-
spective, when T > T lim at a given density, the random thermal
motion of the central particle is so intense that the Maclaurin
expansion made in the derivation of the 2D LJ-EOS up to the
fourth order term is no longer enough. To use this 2D LJ-EOS,
we must therefore find out the temperature range over which
the EOS is accurate for each specific density, i.e., the value
of T lim as a function of ρ2D. In the 2D system, the average
kinetic energy of a particle is T ∗ in reduced units. Because the
total energy of an oscillating system is conserved, the kinetic
energy at the reduced limiting temperature T ∗lim can be written
as

T ∗lim = U∗vib

(
r∗lim

)
, (35)

where U∗vib given by Eq. (27) is a function of r∗lim. Here, r∗lim is
the largest distance of the central particle away from its equi-
librium position to maintain the validity of the 2D LJ-EOS. For
the lower density range (0.9 ≤ ρ∗2D < 1.0), due to the statistical
uncertainties in the simulation, the lowest relative deviation

FIG. 6. Configurations of the 2D Lennard-Jones argon
system at (a) ρ∗2D = 1.0, T∗ = 4.17 (500 K) and (b)
ρ∗2D = 1.0, T∗ = 1.67 (200 K). When ρ∗2D = 1.0, the upper
limiting temperature T lim ∼ 313 K. The argon molecules
are drawn to the reduced scale for clarity.
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between the MC and EOS methods is around 1%, while
for the higher density range (ρ∗2D ≥ 1.0), the lowest rel-
ative deviation is almost zero. Therefore, we can find this
upper temperature limit T ∗lim from our MC simulation results
for a certain density by observing the lowest temperature
point at which the relative deviation between the 2D LJ-EOS
calculation and the simulation result is larger than 5% (for
0.9 ≤ ρ∗2D < 1.0) and 1.5% (for ρ∗2D ≥ 1.0). By means of
a trial and error process, we find that r∗lim ≈ r∗0/10, where
r∗0 is the separation between lattice sites in a perfect hexago-
nal crystal, and can be related to the reduced density through
Eq. (2). From Eqs. (2), (13), (24), and (27), Eq. (35) can be
written as

T ∗lim ≈ U∗vib

(
r∗0/10

)
=

(
κ13

60 000
+

κ3

100
√

3

) (
ρ∗2D

)6

−

(
κ14

60 000
+

κ4

100
√

3

) (
ρ∗2D

)3
, (36)

where κ3, κ4, κ13, and κ14 are constants whose values are listed
in Table II. The T ∗lim derived from Eq. (36) are compared with
the T ∗lim found in 2D MC simulations in Fig. 7. The upper tem-
perature limit from Eq. (36) is in generally good agreement
with that found in Monte Carlo simulations for the higher den-
sities. For the lower densities, the predicted T ∗lim from Eq. (36)
are consistently lower than those found in the simulations,
which implies that Eq. (36) provides a conservative criterion
to predict the T ∗lim. Moreover, we found that this T lim is a rough
estimate of the onset temperature of the melting of the solid.
Due to the hexatic phase between the solid and liquid phase that
may occur in two-dimensional Lennard-Jones systems,14 this
T lim could lie between the melting temperature Tm (transition
temperature from a solid to a hexatic fluid) and the transition
temperature T i from a hexatic fluid to an isotropic liquid. For
example, when ρ∗2D = 0.873, T ∗m = 0.61 < T ∗lim ≈ 0.825
< T ∗i ≈ 0.92.15 Thus, by using Eq. (36), a workable tempera-
ture range (i.e., T ∗ < T ∗lim) for the new 2D LJ-EOS can easily
be determined at a reduced density of interest. For example,

FIG. 7. The upper temperature limit T∗lim found from Eq. (36) (solid line) and
from 2D MC simulations (symbols). Real units are for LJ argon (with σ =
3.405 Å and ε/kB = 119.8 K).

when ρ∗2D = 1.0, Eq. (36) gives T ∗lim ≈ 2.61, which corre-
sponds to the real temperature of 313 K for the LJ argon case in
Fig. 6.

IV. APPLICATION OF 2D LJ-EOS TO THE ADSORBED
CONTACT LAYER IN SLIT PORE SYSTEMS

Here we illustrate one use of the high-density equation
of state, namely, a new route to estimate the effective tangen-
tial pressure in a thin adsorbed film on a planar solid surface.
There is a great deal of evidence from both the experiment
and molecular simulation that strong compression can occur
for molecules adsorbed on a wetting solid surface.35 Thus, for
strongly attractive surfaces such as carbons, the pressure in the
film parallel to the surface can be enhanced by 4-5 orders of
magnitude over the pressure in the bulk phase in equilibrium
with the adsorbed film.37,40

Near to the surface of the substrate the film is highly
inhomogeneous so that the pressure P is a second-order ten-
sor,41–43 having components Pαβ , the force per unit area in the
β-direction acting on an element of surface pointing in (i.e.,
normal to) the α-direction. The statistical mechanical expres-
sion for this pressure42,43 consists of the sum of a kinetic term
(ideal gas term) due to the molecular motion, ρ(z)kT, where
ρ(z) is the 3D number density, N/V, at distance z from the sur-
face of the substrate, and a configurational term which is an
average of the intermolecular forces in the β-direction per unit
area acting on the element of surface. In the examples to be dis-
cussed here, it is the configurational part of the pressure that is
dominant, comprising 80%-90% or more of the total pressure.
If the system is not under strain, the off-diagonal elements
of the pressure tensor are zero, leaving only the three diago-
nal elements, Pxx,Pyy,Pzz. Here we take z to be the direction
normal to the surface so that the surface lies in the xy plane.
From the symmetry of the planar surface, Pxx = Pyy so that
there are two independent pressures: the tangential pressure
PT = Pxx = Pyy parallel to the substrate surface and the pres-
sure acting normal to the surface, PN = Pzz. Finally, we note
that the condition of hydrostatic equilibrium states that there
is no net transfer of momentum between the adsorbed film and
the bulk phase with which it is in equilibrium, and this places
some restrictions on the behavior of the pressure components;
in the absence of any external field, this condition is expressed
as

∇ · P = 0. (37)

A difficulty arises when considering the pressure in an
adsorbed film that is inhomogeneous on the range of the inter-
molecular forces. Because the forces are due to intermolecular
interactions between pairs, triplets, etc. of molecules, there is
no unique way to assign the contribution of these forces to a
particular point in space, r. Thus, there is no unique definition
of the pressure tensor at the nanoscale. For the special case
of a planar surface, the normal pressure is well defined. Thus,
Eq. (37) for the planar surface leads to ∂PN /∂z = 0 so that the
normal pressure is constant and independent of the distance z
from the surface; for a single planar surface, far enough from
the surface, the normal pressure must equal the pressure in
the bulk phase that is in equilibrium with the adsorbed film,
and this pressure is well defined and a scalar. However, the
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tangential pressure is not uniquely defined, and its value will
depend on the path chosen between the centers of two nearby
molecules. This difficulty was recognized by Irving and Kirk-
wood (IK),41 who defined the path to be a straight line joining
the two molecules; if this line crosses the element of surface,
the pair force contributes to the pressure. Other definitions
of the path between two molecules have been used, including
that of Harasima (H),44 and give somewhat different numerical
values for the tangential pressure;45,46 for gas-liquid surfaces,
molecular simulation results show that the IK and H defini-
tions yield tangential pressures that differ significantly, but
these differences are less than 10%.45,46 Many studies have
used the Irving-Kirkwood (IK) operational definition to cal-
culate the pressure tensor at position r, which can be calculated
in molecular simulations as35

PIK (r) = ρ(r)kBT1 −
1
2

〈 N∑
i,j

rijrij

rij

du
(
rij

)
drij

×

∫ 1

0
dλδ

(
ri − r + λrij

)〉
, (38)

where 1 is the second-order unit tensor. The second term on
the right of this equation is the ensemble average of the virial,
and Eq. (38) is known as the virial, or mechanical, route to the
pressure.

Molecular simulation results for slit-shaped pores35–37

show that for adsorbates that wet the pore walls the adsorbed
layers of molecules very near to the wall are quasi-two-
dimensional. An example taken from the work of Srivastava
et al.35 is shown in Fig. 8(a) and displays the quasi-2D structure
of the adsorbed layers, this being particularly pronounced for
the contact layers next to the pore walls. These authors used a
simplified pore model in which the adsorbate LJ molecules
interact with the walls via a Steele (10,4,3) interaction,47

FIG. 8. Molecular simulation results for a LJ adsorbate (a) in a slit pore of
width H∗ = H/σaa = 5.0 and wetting parameter αw = 10. (a) Snapshot of the
structure of the four adsorbed layers; (b) density profile of the four adsorbed
layers in the z-direction. Here the density profile is symmetric about the center
of the pore (z = 0) and the high-density peaks correspond to the contact layers
next to the pore wall. The characteristic length, Lc, in Eq. (41) is marked
in red in the figure. Adsorbate molecules are drawn at a reduced scale for
clarity. (Reprinted with permission from D. Srivastava, E. E. Santiso, and K.
E. Gubbins, Langmuir 33, 11231 (2017). Copyright 2017 American Chemical
Society.)

given by

uas(z) = 2πρsσ
2
asεas∆

[
2
5

(
σas

z

)10
−

(
σas

z

)4

−

(
σ4

as

3∆(z + 0.61∆)3

)]
, (39)

where z is the distance of the adsorbate molecule (a) from
the solid surface (s), ρs is the number density of solid atoms
in the wall, and ∆ is the separation distance between layers
of wall atoms, here taken to be carbon, the wall consisting
of graphite. This equation is derived by summing up all the
LJ interactions between a single adsorbate molecule and the
carbon atoms in the substrate. With this model wall, it is pos-
sible to define a microscopic wetting parameter, αw, as the
ratio of the strength of interaction of an adsorbate molecule
with the wall to the interaction between two adsorbate
molecules,

αw =
Adsorbate - Wall Interaction

Adsorbate - Adsorbate Interaction
= ρsσ

2
as∆

(
εas

εaa

)
.

(40)

A value of αw = 0 corresponds to complete non-wetting, while
large values of αw indicate strong wetting. In this pore model,
there are two dimensionless parameters αw and H∗ = H/σaa

that characterize the pore.
The behavior of the contact layer of adsorbate molecules

can be related to that of a strictly 2D reference film by project-
ing the center of mass positions of the molecules in the layer
onto an xy plane (keeping the x and y values of each molecule
fixed) drawn through the average of the actual center of mass
positions in the z-direction. The two-dimensional density, ρ2D

= N /S, of these projected molecules in the layer can be read
from the simulation results, and the ensemble average value
of these 2D densities can then be used in the 2D LJ equation
of state to determine the corresponding pressure, P2D, of the
2D reference film. The tangential pressure in the slit pore is a
three-dimensional pressure, having units of force per unit area;
we take this pressure to be that due to the force in the y direc-
tion acting on an area element in the xz plane (i.e., pointing in
the y-direction). By contrast, P2D has units of force per unit
length; it is the force in the y-direction acting on an element of
length in the x-direction. We now define an effective tangential
pressure in the slit pore, as calculated by this new 2D route,
as

PT ,2D ≡
P2D

Lc
, (41)

where Lc is a characteristic length in the z-direction. While P2D

is the 2D pressure in a homogeneous film and is well defined,
Lc is not well defined, reflecting the fact that the tangential
pressure in the 3D inhomogeneous system is not well defined.
It seems reasonable to conclude that Lc should be related to the
thickness of the adsorbed layer; for the contact layers shown
in Fig. 8(b), this thickness is less than 1 Å. Here we choose Lc

to be width of the density profile of the contact layer at half of
its peak value, which is readily calculated from the simulation
results [see Fig. 8(b)].
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TABLE III. Comparison between the effective tangential pressure, PT ,2D, of Eq. (41), derived from the 2D LJ-
EOS in this work, and the reported peak value35 of the tangential pressure for the contact layer, PT ,IK , of Eq. (38),
calculated from the Irving-Kirkwood (IK) virial route. Calculations are for LJ nitric oxide, NO, at a temperature
of 140 K (T∗ = 1.12) and a bulk phase pressure of 0.16 bar.a See text for further details.

ρ∗2D P∗2D P2D(N/m) L∗c PT ,2D(GPa) PT ,IK (GPa) Deviation

H = 3σaa,αw = 10 1.00 14.4889 0.2486 0.07342 10.68 11.58 7.8%
H = 3σaa,αw = 39 1.16 50.9826 0.8748 0.05905 46.71 48.46 3.6%
H = 5σaa,αw = 10 1.02 17.0994 0.2934 0.06863 13.48 16.12 16.4%
H = 5σaa,αw = 39 1.27 108.216 1.8568 0.03511 166.7 224.5 25.7%

aρ∗2D = Nσ2
aa/S, P∗2D = P2Dσ

2
aa/εaa, L∗c = Lc/σaa, T ∗ = kBT/εaa,

Deviation = ��PT ,IK − PT ,2D
��/PT ,IK .

In Table III, we show results for the effective tangential
pressure calculated from the 2D route of Eq. (41) and compare
these with the peak tangential pressures for the contact layer,
PT ,IK , calculated from the IK virial route of Eq. (38), using the
simulation data of Srivastava et al.35 The data are for two pore
widths, H∗ of 3.0 and 5.0, and for two values of αw, 10 and 39,
corresponding to weak chemisorption of the adsorbate with the
pore walls. The results given in Table III are for a temperature
of 140 K (T ∗ = 1.12), which is well within the range of validity
of the 2D LJ-EOS at the densities considered, as seen from
Eq. (36) and Fig. 7. The reduced units in Table III are converted
to real units by using the Lennard-Jones parameters for nitric
oxide, NO, as used by Srivastava et al.;35 σaa = 0.317 15 nm,
εaa/kB = 125.0 K.

The results for the effective tangential pressures in
Table III show qualitative agreement between the IK virial
route and the 2D route. For the pore width of H∗ = 3, the pore
only contains two adsorbed layers, both of which are contact
layers on the two opposing pore walls. These layers are close to
two-dimensional in their structure, and the difference between
the pressures given by the two routes is less than 10%. For the
larger pores of H∗ = 5, the difference in pressures from the two
routes is larger, but still less than 30%. The deviations between
these two routes are probably due to the arbitrary choice of the
characteristic length, Lc.

V. CONCLUSION

In this study, we present the derivation of a new two-
dimensional Lennard-Jones equation of state (2D LJ-EOS),
which is specifically designed for the crystalline solid phase
(ρ∗2D ≥ 0.9). The new 2D LJ-EOS is composed of two parts:
the pressure at zero Kelvin and the vibrational contribution to
the pressure at non-zero temperature. For the vibrational con-
tribution, we include both the harmonic term and the second
anharmonic term (the first anharmonic term is zero). Two-
dimensional Monte Carlo (2D MC) simulations were carried
out to test the validity of the 2D LJ-EOS. The simulation results
show quantitative agreement with the 2D LJ-EOS calculations
over a wide range of temperatures in the high-density region.
Our 2D LJ-EOS neglects contributions from anharmonic terms
of 3rd order and higher and also neglects collective lattice
vibration effects. The excellent agreement of the EOS with
the MC simulations suggests that any such effects are very
small in the range of state conditions considered.

We also present an equation in terms of reduced density
to find the upper temperature limit, T ∗lim, for the 2D LJ-EOS.
When, for a given density, the working temperature is lower
than T ∗lim, the 2D LJ-EOS can give a pressure value close to
the exact 2D MC result with relative deviation within 5% for
0.9 ≤ ρ∗2D < 1.0 and 1.5% for ρ∗2D ≥ 1.0. This T ∗lim was also
found to be a rough estimate of the melting temperature for
2D LJ solid.

Following the validation of the accuracy of the 2D LJ-
EOS and of the temperature and density range over which it is
applicable, we have demonstrated its application to estimate
the effective tangential pressure of the adsorbed contact layer
in slit-pore systems. The value, PT ,2D, predicted by this new
“2D route” agrees qualitatively with the peak tangential pres-
sure values, PT ,IK , obtained via the virial Irving-Kirkwood
route,35 the deviation between the two routes being less than
10% for the smaller pore of width H∗ = 3 and about 25%
for the larger H∗ = 5 pore. The inner adsorbed layers, farther
from the pore walls, have a more diffuse structure than the
contact layers [see Fig. 8(a)] so that the simple “2D route”
used here is uncertain to give an accurate representation of the
effective tangential pressure in these layers; however, a pertur-
bation treatment about the 2D LJ system might offer a better
representation. The new 2D LJ-EOS could also be extended to
study adsorbed layers of mixtures by using the van der Waals
1-fluid theory.48,49
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APPENDIX A: HESSIAN MATRIX
FOR HARMONIC TERM

From Eqs. (12)–(15), we want to prove that α = β and
γ = 0. That is,

κ3 − κ5 = κ4 − κ6 = κ7 = κ8 = 0. (A1)

Using the expressions in Table I, we assume that the following
four equations are correct:
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λ1 = κ3 − κ5 = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

2i2 − j2 + 2ij(
i2 + j2 + ij

)8
= 0, (A2)

λ2 = κ4 − κ6 = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

2i2 − j2 + 2ij(
i2 + j2 + ij

)5
= 0, (A3)

λ3 = κ7 = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

j2 + 2ij(
i2 + j2 + ij

)8
= 0, (A4)

λ4 = κ8 = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

j2 + 2ij(
i2 + j2 + ij

)5
= 0, (A5)

where i and j are dummy variables and exchanging them will
not affect the final limiting results. By replacing i with j and j
with i, Eqs. (A2)–(A5) can also be equivalently written as

λ ′1 = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

2j2 − i2 + 2ij(
i2 + j2 + ij

)8
, (A6)

λ ′2 = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

2j2 − i2 + 2ij(
i2 + j2 + ij

)5
, (A7)

λ ′3 = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

i2 + 2ij(
i2 + j2 + ij

)8
, (A8)

λ ′4 = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

i2 + 2ij(
i2 + j2 + ij

)5
, (A9)

where λi = λ
′
i (i = 1,2,3,4). Then we have

λi + λ ′i = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

i2 + j2 + 4ij(
i2 + j2 + ij

)8
= 0 (i = 1,3),

(A10)

λi + λ ′i = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

i2 + j2 + 4ij(
i2 + j2 + ij

)5
= 0 (i = 2,4).

(A11)

We further demonstrate that

λi + λ ′i = lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0

i2 + j2 + 4ij(
i2 + j2 + ij

)n = 0, (A12)

where n = 5 and 8. We numerically calculated the value of
Eq. (A12), and found that its value converges very quickly
to about -1E-16, which approximates the machine precision.
Therefore, we can safely say that

λi + λ ′i ≈ 0 (A13)

because λi = λ ′i (i = 1,2,3,4), λi ≈ 0. Consequently, we’ve
numerically proved that α ≈ β and γ ≈ 0.

APPENDIX B: EVALUATION OF THIRD ORDER
GRADIENT OF THE BACKGROUND ENERGY

The third order gradient of the background mean-field
energy, evaluated at r∗ = 0, can be written as

I0 = ∇r∗∇r∗∇r∗U
∗ (r∗ = 0

)
= 4 lim

L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0



∂3fi,j
∂x∗∂x∗∂x∗

∂3fi,j
∂y∗∂x∗∂x∗

∂3fi,j
∂x∗∂y∗∂x∗

∂3fi,j
∂y∗∂y∗∂x∗

∂3fi,j
∂x∗∂x∗∂y∗

∂3fi,j
∂y∗∂x∗∂y∗

∂3fi,j
∂x∗∂y∗∂y∗

∂3fi,j
∂y∗∂y∗∂y∗



�����������r*=0

= 384 lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0


−28

1



r∗i,j





18

+ 5
1




r∗i,j





12





(
x∗i,j

)3 (
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)2
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(
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(
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)2 (
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+ 96 lim
L,M→∞

L,M∑
i,j=−L,−M
i,j,0,0


7
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r∗i,j
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− 2

1



r∗i,j





10





3
(
x∗i,j

)
y∗i,j y∗i,j x∗i,j

y∗i,j x∗i,j x∗i,j 3
(
y∗i,j

) 
. (B1)

For two particles at the position of r∗i,j and r∗
−i,−j, the distances

to the origin are equal, i.e., 


r∗i,j



 =




r∗
−i,−j




. From Eq. (11),

it is obvious that the summation of terms
(
x∗i,j

)3
,
(
x∗i,j

)2
y∗i,j,

x∗i,j
(
y∗i,j

)2
,
(
y∗i,j

)3
, x∗i,j, and y∗i,j for pair (i,j) and pair (�i,�j) leads

to zero. Thus, the whole summation in Eq. (B1) results in a
zero tensor.
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